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Abstract. On the basis of the compiled database in a number of 3020 sample 
plots with determinations of forest biomass of two-needled pines (subgenus 
Pinus) on the territory of Eurasia from Great Britain to southern China and 
Japan statistically significant transcontinental gradients of stem, roots, above-
ground and total biomass are established. In the direction from North to South 
these biomass components change according to a bell-shaped curvewith a 
maximum in the third (the southern temperate) zonal belt, while the biomass 
of needles, branches and understory is monotonically increasing within this 
zonal gradient from subarctic to subequatorial zonal belts. In the direction 
from the Atlantic and Pacific coasts to the continentality pole in Siberia there 
is a biomass decrease as of all components of the wood story and the under-
story. The root: shoot ratio increases in the range between subarctic and 
southern temperate zone from 12 to 22% and then decreases to 16% in the 
subtropical zone, and within the southern temperate zone it monotonically 
increases from 20% on the oceanic coasts to 23% near continentality pole. 
The ratio of understory biomass to wood story biomass reduced from 4.0 to 
2.5% ranging from subarctic to southern temperate zone and then rises to 
3.5% in the subtropical zone, and within the south temperate zone it monoton-
ically decreasing from the maximum value of 22% near Atlantic and Pacific 
coasts, approaching the level of 2-3% near the continentality pole. The results 
can be useful in the management of biosphere functions of forests undoubted-
ly. 
  
Key words: Phytogeography, Pine Forests, Natural Zones, Climate 
Continentality Index. 
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1. Introduction 

In connection with the problem of global climate change, forest bio-

mass is seen as their main characteristic determining the course of pro-

cesses in forest ecosystems and used for environmental monitoring, 

sustainable forest management, modelling forest productivity taking 

into account global changes, study the structure and biodiversity of 

forest cover as well as assessment of carbon-depositing capacity of 

forests. Biomass of plant cover is determined by many factors, of which 

the most important is the climatic one associated with the intensity of 

solar radiation and climate continentality (Grigoriev & Budyko, 1956; 

Nazimova, 1995). Both biomass and NPP are known to be linked to 

climatic patterns such as evapotranspiration (Rosenzweig, 1968; Lieth, 

1974a, b) as well as the amount of precipitation and average annual 

temperature (Lieth, 1974a, b; Luyssaert et al., 2007). Such links have 

often been studied indirectly by using geographical gradients of single 

species of Europe (Oleksyn et al., 1999) and Asia (Shi, Sasa, & Koike, 

2010). The first attempt to build a zonal profile of biomass productivity 

of forest vegetation of the European part of Russia have taken E.M. 

Lavrenko et al., 1955. V.L. Komarov (1921) was developed the doc-

trine of meridional zonation of vegetation, that complements the latitu-

dinal zonation and should be taken into account in the allocation of 

biogeographical regions. He distinguishes between the two types of 

major continental floras: near oceanic, elongated along the coasts, and 

continental, developing in the distance from the first. The intersecting 

with known seven latitude zones, they give on the spaces of Old and 

New world 42 floral district.  
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Yearlier geographical regularities of pines were studied on a tree level 

(Usoltsev et al., 2016). Geographical Trans-Eurasian regularities of 

pines on forest stand level are not revealed yet. This paper is devoted to 

revealing of transcontinental climate-caused trends in the biomass 

structure of forest stands formed with two-needled pines (Pinus subge-

nus).  

2. Study area 

In 1990-2010 years the forest biomass database in a number of 8 thou-

sand sample plots was compiled by the one of the authors, using own 

and literature sources, shown in the published databases (Usoltsev, 

2010; Usoltsev, 2013a). From these databases the data of 3020 plots 

with biomass determination including 2125 - natural forests and 895 - 

plantations are extracted for the analysis of geographic patterns of dis-

tribution of two-needled pine forest biomass on the territory of Eurasia. 

About 80% of the data refers to the territory of the former USSR. Bio-

mass data is presented with different components (stems, branches, 

foliage, roots and understory including grass cover, bushes, shrubs and 

ingrowth). 

Allocation of plots with determinations of pine forest biomass is shown 

on the map of Eurasia in Figure 1 and dividing to wood species and 

countries - in the Table 1. In the database for Japan, besides the native 

two-needled species (Pinus densiflora and Pinus thunbergii, respective-

ly 23 and 10 plots), the 2-3-needled pine species (Pinus taeda and Pi-

nus elliottii, respectively 9 and 7 plots) introduced from North America 

are included. 
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Figure 1. Allocation of sample plots with biomass (t/ha) determinations in a 

number of 3020 pine (subgenus Pinus) forest stands on the territory 
of Eurasia 

 

 

 

 

 

 

Table 1. Distribution of plots with determinations of pine biomass (t/ha) by 
species and countries 

Species Botanical title Country Plot quanti-
ty 

Scots pine  Pinus sylvestris 

L. 

Russia, Kazakhstan, Belarus, 

Ukraine, Finland, Sweden, Swit-

zerland, Great Britain, Czech 

Republic, Slovakia, Bulgaria, 

China, Germany, Belgium, 

Spain, Hungary, Lithuania, Nor-

way, Poland, Estonia 

2580 



 

 

5 

 

Chinese pine P. tabuliformis 

Carr. 

China 165 

Masson's pine  P. massoniana  

Lamb.  

China 65 

Taiwan red 

pine 

P. taiwanensis 

Hayata 

China 55 

Yunnan pine P. yunnanensis 

Franchet 

China 46 

Austrian pine P. nigra Arn. England, Hungary, France, Ger-

many, Netherlands 

33 

Japanese red 

pine    

P. densiflora S. 

et Z.  

Japan 23 

Maritime pine Pinus pinaster 

Aiton 

Russia, France, Italy 11 

Turkish pine Pinus brutia 

var. pityusa 

(Steven) Silba 

Russia 10 

Japanese 

Black pine 

P. thunbergii 

Parl.  

Japan 10 

Loblolly pine Pinus taeda  L.  Japan 9 

Slash pine Pinus elliottii 

Engelm.  

Japan  7 

Koch’s pine Pinus sylvestris 

var. hamata 

Georgia 3 
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Steven 

Aleppo pine P. halepensis 

Mill. 

Iraq 1 

Pallas pine  Pinus nigra 

subsp. pal-

lasiana (Lamb.) 

Holmboe 

Russia 1 

Italian stone 

pine 

Pinus pinea L. France 1 

Total 3020 

 

 

3. Material and methods 

All the data involved into the published database were obtained on for-

est sample plots on which sample trees were taken and the biomass data 

on the area were calculated by allometric method. Methodical peculi-

arities were given in the published database (Usoltsev, 2001; 2007; 

2010). As plots for estimating biomass of forest stands are usually es-

tablished in typical 'background' habitats, that are representative in rela-

tion to one and other type of forest-forming species, one can make on 

their basis a preliminary geographical analysis of biomass gradients of 

pine forests.  

For analytical description of geographic distribution patterns of bio-

mass productivity of forest cover, one must choose the geographical 

characteristics of the territory of Eurasia, that can be expressed by the 

quantity and measure. Global primary production dependencies of for-
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est cover from evapotranspiration (Rosenzweig, 1968), as well as on 

the amount of precipitation and the average annual temperature (Lieth, 

1974a,b) are known, but they are fulfilled on the basis of single regres-

sions, excluding conjugate estimation of determining factors. 

The same wood species cannot be grown throughout Eurasia, and habi-

tats of different species are associated with specific eco-regions (e.g., 

Pinus nigra in the Balkans and Pinus densiflora in Japan). This phe-

nomenon in plant communities chorology (Tolmachev, 1962) is known 

as the substitution of species: replacing or vicarious species of plants 

occur in the cases of geologically long-time separation of once contin-

uous area. If we want to analyze the geography of biomass in the 

broadest geographic ranges, we encounter inevitable with the phenom-

enon of substitution of species. Therefore, geographical analysis is 

made at the level of the vicarious species within the subgenus Pinus. 

Actual 3020 pine sample plot biomass allocations (see Figure 1) we 

related with five regional zones (subarctic, northern temperate, south-

ern temperate, subtropical and subequatorial), coded by serial numbers 

1, 2, 3, 4 and 5 (see Fig. 2), as well as according to continentality index 

on the territory of Eurasia by S.P. Khromov (1957) (Figure 3) by draw-

ing on the maps the coordinates of each plot. 
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Figure 2. Allocation of sample plots having pine forest biomass (t/ha) according to 
zonal belts: 1 – subarctic, 2 – northern temperate, 3 – southern temperate, 4 
– subtropical, 5 – subequatorial (Аlisov, Poltaraus, 1974; Bazilevich, Ro-
din, 1967) 

 

 

Figure 3. Isoline map of climate continentality of Eurasia (Khromov, 1957) 
with the situation of plots on which biomass of pine forests (t/ha) is 
estimated 
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Basic principles of modelling and the results obtained by means of re-

gression analysis should have ecologic-geographical interpretation. 

Biological productivity of forests is depending on climatic factors, but 

only as a first approximation, since there are ontogenetic, cenotic, 

edaphical, and other levels of its variability. Therefore, we include in 

the regression equations the independent variables explaining the vari-

ability of the dependent variable, expressing not only with climatic pa-

rameters but also with forest age, tree density and stem volume. Then 

the technique of multivariate regression analysis according to two 

blocks of recursive equations is used: block of two mass-forming indi-

ces N and M and block of biomass Pi (arrows show the sequence of 

calculations); 

 

N= f (A, Zon, IC)→M=f (A, N, Zon, IC)→Pi=f (A, N, M, Zon, IC),    (1) 

 

where  N - tree number, thousands of individuals per hа; A - forest age, 

yrs; M - stem volume, m3 per ha; Pi  - dry biomass of stems above bark, 

branches, needles, roots, aboveground, total tree story and understory 

(correspondingly PS, PB, PF, PR, PА, PТ and PU), t per ha; Zon - zonal 

belt number: 1, 2, 3, 4 and 5, correspondingly subarctic, northern tem-

perate, southern temperate, subtropical and subequatorial; IC - climate 

continentality index by S.P. Khromov (1957), %.  

As tree density is included in equation (1) as one of the independent 

variable, natural forests and plantations, differing mostly by their densi-

ty, are not subdivided, and calculation of equations (1) is made for gen-

eralized actual data pool. In indices of PА and PТ the wood biomass 
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without understory is only involved. For the last component the equa-

tion (1) is calculated separately.  

4. Results and discussion 

Results of calculation of equations (1) are listed in the Table 2; 

 

Table 2. The characteristic of equations (1) to pine forests of Eurasia 
Dependent 

variables 

Coefficients and independent variables 

а0 а1 (lnA) a2(lnA)2 a3(lnN) a4(lnN)2 a5(lnM) 

ln (N) 2.3672 -1.1322 - - - - 

ln (M) -3.0366 3.6842 -0.3926 -0.0652 - - 

ln (PS) 0.9487 0.2182 -0.0153 0.0150 - 0.9335 

ln (PB) 5.7294 -0.8188 0.0827 -0.0560 -0.0208 0.6120 

ln (PF) 1.1499 -0.9942 0.0882 0.0414 - 0.8579 

ln (PR) -1.6828 0.9424 -0.0897 0.0875 - 0.6970 

ln (PА) 2.9015 -0.2889 0.0389 - - 0.7382 

ln (PТ) 2.6286 0.0553 - 0.0121 - 0.4854 

ln (PU) 27.072 -2.2551 0.3356 - - - 

Table 2 continued 

Dependent 

variables 

Coefficients and independent variables 
R2 SE 

a6(lnM)2 a7ln (Zon) a8(lnZon)2 a9ln(IC) 

ln (N) - 0.7326 -0.9818 0.6250 0.579 0.70 

ln (M) - 2.1820 -0.9872 -0.2745 0.533 0.65 

ln (PS) - -0.3865 0.2125 -0.4319 0.967 0.17 

ln (PB) - -1.5355 0.9599 -0.9209 0.648 0.40 
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ln (PF) -0.0464 -1.0286 0.6861 0.0352 0.475 0.36 

ln (PR) - 0.9222 -0.3816 -0.3987 0.817 0.34 

ln (PА) 0.0128 -0.5340 0.3210 -0.4101 0.951 0.18 

ln (PТ) 0.0369 0.1586 - -0.3988 0.949 0.17 

ln (PU) - 0.4498 - -5.1966 0.169 0.90 

 

Only the variables that are significant at the level of probability of P95 

and above are showed in the equations. The equations are tabulated in 

the sequence illustrated by arrows, using forest age, zonal number and 

continentality index values in the range from 20 up to 200 years old 

(not shown here). From the calculated age-related table the values of 

the desired indices for age 100 years are taken and they are presented 

as graphs of their relations to the zoning of the territory and its climate 

continental index (Figs 4 and 5).  
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Figure 4. Dependence of the estimated biomass of needles (a), branches (b), 
stems (c), roots (d), aboveground (e) and total tree story (f) at the age 
of 100 years from the zonal affiliation of pine forests in continentali-
ty index equal 80% 

 

 

Figure 5. Dependence of the estimated biomass of needles (a), branches (b), 
stems (c), roots (d), aboveground (e) and total tree story (f) at the 
age of 100 years in the southern temperate climatic zone upon the 
continentality index after S.P. Khromov (1957) 

 

According to the results obtained, biomass of needles and branches is 

monotonically increasing in the direction from 1st to 5th zonal belt 

(Fig. 4 a, b), the biomass of stems and roots is changes in the form of 

the bell-shaped curve with a maximum in the 3rd zonal belt (Fig. 4 c, d) 

and aggregate component indices-aboveground and total biomass are 

increasing from the 1st to the 3rd belt, and then, if somewhat reduced, 

but almost go to the plateau (Fig. 4 e, f). With a fixed zonal belt (in this 

case the zonal belt 3) all biomass components and their aggregated val-
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ues are monotonically decreasing in the direction from the Atlantic and 

Pacific coasts to continentality pole in Yakutia (Fig. 5). A similar pat-

tern has been established for cedar pine stand biomass (Usoltsev, 

2013b). Change of calculated estimates of understory biomass accord-

ing to transcontinental gradients, is mostly similar to changing the 

aboveground and total biomass of forest stands, i.e. is increasing from 

north to south (from 1st to 5th zonal belts), and decreases in direction 

from the Atlantic and Pacific coasts to continentality pole in Yakutia 

(Fig. 6). 

 

Figure 6. Dependence of calculated values of understory biomass at the stand 
age of 100 years upon the zonal affiliation of pine forests in conti-
nentality index equal 80% (a) and upon continentality index after 
S.P. Khromov (1957) in the southern temperate zonal belt (b) 

 
The root: shoot ratio (PR/PA) changes according to zonal belts in the 
form of the bell-shaped curve with the maximum at 3rd zonal belt and 
increases as climate continentality grows (Fig. 7). The share of the un-
derstory biomass in the total one is lowest in the 3rd zone and monoto-
nously decreases towards the pole of climate continentality (Fig. 8). 
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Figure 7. Dependence of PR/PA ratio of pine forests in the age of 100 years 
upon serial number of climatic zone in continentality index after 
S.P. Khromov (1957) equal to 80% (а) and upon climate continen-
tality in the southern temperate zonal belt (b)  

 

 

Figure 8. Dependence  РU/РT ratio of pine forests in the age of 100 years upon 
serial number of climatic zone in continentality index after S.P. 
Khromov (1957) equal to 80% (а) and upon climate continentality 
in the southern temperate zonal belt (b) 

 

5. Conclusions 

On the basis of the compiled database in a number of 3020 sample plots 

with determinations of forest biomass of two-needled pines (subgenus 

Pinus) on the territory of Eurasia from Great Britain to southern China 

and Japan statistically significant transcontinental gradients of stem, 

roots, aboveground and total biomass are established. In the direction 

from North to South these biomass components change according to a 

bell-shaped curve with a maximum in the third (the southern temperate) 

zonal belt, while the biomass of needles, branches and understory is 

monotonically increasing within this zonal gradient from subarctic to 

subequatorial zonal belts. In the direction from the Atlantic and Pacific 

coasts to the continentality pole in Siberia there is a biomass decrease 

as of all components of the wood story and the understory. The root 

shoot ratio increases in the range between subarctic and southern tem-

perate zone from 12 to 22% and then decreases to 16% in the subtropi-
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cal zone, and within the south temperate zone it monotonically increas-

es from 20% on the oceanic coasts to 23% near continentality pole. The 

ratio of understory biomass to wood story biomass reduced from 4.0 to 

2.5% ranging from subarctic to southern temperate zone and then rises 

to 3.5% in the subtropical zone, and within the south temperate zone it 

monotonically decreasing from the maximum value of 22% near Atlan-

tic and Pacific coasts, approaching the level of 2-3% near the continen-

tality pole. Later results of some authors devoted to zonal biomass and 

NPP changing were related to total values of biological productivity, 

without devising by species and whithout taxation indices accounting 

for (Anderson et al., 2006; Huston, Wolverton, 2009). The results ob-

tained can be useful in the management of biosphere functions of for-

ests, what is important when implementing activities on climate stabili-

zation, as well as in the validation of the results of the simulations for 

assessing the carbon-depositing forest capacity. They also provide a 

preliminary indication of possible biases of forest biological productivi-

ty in connection with the shifts of latitudinal and meridional zoning 

under the influence of climate change.  
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