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Abstract. In this paper, we propose unified mathematical forms of many-parametric
complex and quaternion Fourier transforms for novel Intelligent OFDM-telecommunication
systems (OFDM-TCS). Each many-parametric transform (MPT) depends on many free angle
parameters. When parameters are changed in some way, the type and form of transform are
changed as well. For example, MPT may be the Fourier transform for one set of parameters,
wavelet transform for other parameters and other transforms for other values of parameters.
The new Intelligent-OFDM-TCS uses inverse MPT for modulation at the transmitter and direct
MPT for demodulation at the receiver.

1. Introduction

1.1. Jacobi parametrization of orthogonal transforms

One of the best-unknown MPT was developed by the 19" century mathematician Jacobi [1]. We recall
that Jacobi’s sequential method reduces an orthogonal matrix U to identical matrix by applying
orthogonal rotations to right of U, Q=U-J, (gopq ) , where orthonormal Jacobi rotation

p q
1 - 0:-.- 0:--- 0
(p.a) p 0o ... CY S' .- 0
JNpq (@pq): PQE ; pqE |
q o ... Sp,q _Cp,q .. 0
0o ... 0:... 0:i--- 1

is used to reduce the element U, or U, to zero. Jacobi rotation JPw ((ppq) operates on p-th and g-th

element of the p-th row of U=[U, ]IN ., such that Q,, becomes zero. For Q,, =0 it must be required:
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-U,c+Us=0. Hence, the expression for tg((ppq)become tg(gopq):qu JU,, - This is equivalent to

U U
(c,9)= y , y . For example,
WitV /U5 U5,

O O 0O 0O O Oyce s O " O0O00
O 0O 0o0ogdjs —c O o0o0ooao
O o0oooggao 1 O O0oogooao
QV=Un W)=l 5 5 g g o o 1 “loooooal
O O o oo O o0Oo0oooao
OO0 o0oogogoao 1 OO0 o0oo0ooao
where white boxes are nonzero elements and black box is the zero element. Further,
QY =U, -0 (9,)I0 (9) = QU™ =Uy - 30 (0,)307 (9) - I (0) =
O m B OO0 0O O B B B B N
O 0o o o0oo0 O o oo oo
O Ooooogd ) , O Oooood
OO0 o00oaQg OO0 o0oaoaaf
O 0o oo o0 0o o oo oo
O Oooood O ooood

But Q(N'H) is an orthogonal matrix as the product of orthogonal matrices. For this reason, it can have

Only the fOIIOWing form: Qi\lNil) = UN : ‘]N ((012)‘]N ((p13) e ‘]N ((olN) = UN : ﬁ‘]N (¢1‘q) = [il] ® QN—l' Wwhere

@ is the symbol of direct matrix sum, Q,_, is (N —1)x(N —1) orthogonal matrix opposite to Q =Q,

CN'“N] SN-1 5N

that is (NxN) orthogonal matrix. Obviously, Q, * '=U,[] []I0”(,,) =diag, (+1..+1)=

p=1 g=p+l

=[+1]]®[+1]®...®[+1]. Hence, an orthogonal matrix U is composed of series of Jacobi rotations:

N
«<N-1 <N

U@ =TTT]I¢V,,). where @=(¢,,,¢ 5.0y ) is N(N +1)/ 2 -dimension vector of so-called

p=1 g=p+l

N «n-1
the Jacobi angles ¢,,,. Here [[T'=T'T"..T" and [T =T""...T'T° are the right and left multiplications,
i=0 i=0
«~N-1 <N

respectively. Many-parameter representation U, (¢)= ]| HJ“’*“)((ppvq) IS very important with

p=l g=p+l

theoretical point of view, but it is not very useful with digital processing point of view.

1.2. MPT in signal and image analysis
The concept of fast MPT in signal and image processing was printed by Andrews [2] in the form of

COS @ sing.
. @ qo.} i=12,..n:
sing. —Cos¢,

cosg,  sing ® ®COS(0n sing,
sing, —Cosg, sing, —cosg, |

tensor product of Jacobi (2x 2)-matrices J,(¢,) :{

CSZ,, (21,050 0,) =3, (@) B @I, () :|:

This tensor product is factorized into the ordinary product of sparse matrices



ITNT 2019 IOP Publishing
Journal of Physics: Conference Series 1368 (2019) 052022  doi:10.1088/1742-6596/1368/5/052022

CS, (.02 0) = [ 12 ®3:(2) @1, |
r=1

It is just the fast Andrews transform. In particular case, when ¢ =@, =...=¢, =7/4, we obtain

nfl 1 1 1 1 1
ordinary Walsh transform W, =(J§/2) L J@L }@---@L J. The same form has n-

parameter Haar transform [3-6]: HTzn(6011%1---,%)=H[(Jz(¢’r)®|2nfr)@|2n,2nfm]- Obviously,
r=1

T T T L . .
HT, (Z,Z,...,Zj =HT, = 1—[[(W2 ®1,,)®1, ,...]P, isthe ordinary Haar transform.

Let p=p(k,s,)=2""k +s., q=q(K,,s,)=p(k,,s,)+2"" be the radix-(2*,2"") representation of
p.qe{01,..,2" -1}, where k {0,1..,2" -1}, 5 €{01...2"" ~1f. Then we can write matrices

CS, (@1, 0s1-,) 8

n n | 2ta2n T
CsS, (gol,(pz,...,(pn)=l_[[lz,,1 ®J2((pr)®lzn,r] H{H H J(pk 5.0k 5,)) ¢r)i|
r=1

0 s.=0

Using different angles in every Jacobi matrix, we obtain n-2"" - parameter Walsh-like transform:

CS2n ((pl,(pz,...,(pn)zﬁrl_fzn J(p(k sk, sr))((pr(k ) )} 1)

r=1| k,=0 s
where

(0,00 _(01) (0,2"1-1) (0,0) _(01) (0,22 (1,0) (11) (1,2"%-1)

—(¢7 1(01 ) ) ¢, = (@ 1Py e Dy !(02 1Py ’(/)2 ),
0,0) _(0,1) 0,2"%-1). _(1,0) (11) 1,2"3-1). (2,0)  (2.1) (2,2"3— (3,0) (3.1) (3,2"%-1)
=(p3 05 5 R SN N N A SN )

0,0). (1,0). (2"*-1,0)
01 = (00000 )

Recently, several authors [7]-[14] have proposed Jacobi parametrization of Golay and wavelet
transforms.

1.3. Fractional and many-parameter ordinary Fourier transforms
The eigendecomposition (ED) is a tool of both practical and theoretical importance in digital signal and
image processing. The ED transforms are defined by the following way. Let U be an arbitrary discrete

orthogonal (or unitary) (N x N)—transform, A, and |‘Pm (n)>, m,n=0,1,...,N -1, be its eigenvalues
and column-eigenvectors, respectively. Let U =[|‘I’O(n)>,|‘P1(n)>,...,|‘PN_l(n)>] be the matrix of
eigenvectors of the o —transform. Then U™.i{-U=Diag {k ...,kN_l} =A. Hence, we have the

following eigendecomposition: U =[u, (n)]: Zk |‘P >< )|:U-Diag(%o,...,xN_l)-U’l.

Definition 1. For an arbitrary real numbers a,,...,a, , we introduce the many-parameter ¢/ —transform
YCor-2na) :=U-D|ag(xgﬂ,...,x;~_—;)-u 1, @
If a,=...=a,_,=a then this transform is called the fractional Z/—transform. For this transform we

have

U =U{diag(23,.... 15, )| U =UA U™ 3



ITNT 2019 IOP Publishing
Journal of Physics: Conference Series 1368 (2019) 052022  doi:10.1088/1742-6596/1368/5/052022

The zeroth-order fractional Z{ —transform is equal to the identity transform: /° =UA°U™" =UU™" =1
and the first-order fractional i/ -transform operator is equal to the initial transform ¢* =UAU™. The

families {u(ao,.,.,aN,l)} and {ua} . form many- and one-parameter continuous unitary groups

(ao,.44,aN,1)eRN ae

with multiplications 2421z f®-tws) — gyGotbonartus) ang  74214° = 142+ respectively.

om N-1
Let 7, ={e N } be the discrete Fourier (N x N)—transform (DFT). Relevant properties are that

kn=0
the square (7 f )(x) = f(-x) is the inversion operator, and that its fourth power (A f)(x) = f(x) is
the identity; hence F. =F,". The operator JF, thus generates the Fourier cyclic group of order 4:
Gr4(F)={ }ae{om} { ﬁ},f,j,fs} The idea of fractional powers of the Fourier operator F appears
in the mathematical literature [15-22]. This idea is to consider the eigenvalue decomposition of the

Fourier transform ]—":ikn|‘1’n(x)><‘1’n(co)| in terms of eigenvalues A, =e™?=j" and eigen-
n=0

functions ‘I’n(x) in the form of the Hermite functions. The family of FrFT{]-“*"}a 04 (instead of

s 12 ) 1S CONStructed by replacing the n-th eigenvalue 2, =e™2 by its a -th power A% =ei™?,

for a between 0 and 4.
The eigenvalues of the standard DFT matrix F, are the fourth roots of unity, to be denoted by

) 3
jns/2
XS € {e } 0

e{+L+j} and {‘Pm(n)}::) are the discrete Hermite polynomials. This divides the space
of N-point complex signals into four Fourier invariant subspaces whose dimensions N, are the

multiplicities of the eigenvalues &, , which have a modulo 4 recurrence in the dimension N =2" =4M
given by N,=M +1L,N,=M -1, N, =M, N, =M. Let s(n):{0,1,2,..,N-1}—>{0,1,2,3} be a peculiar

function. It determines a distribution of eigenvalues along main diagonal Dlag(e 2" j in (3). This

function takes M +1 times value 0, M —1 times value 1, and M times values 2 and 3.
Definition 2. The discrete classical and Bargmann fractional Fourier transforms are defined as

(e (m)] = u{oiag[ej?‘“m“}}u-l =3, (k) ()]

“4)
BF* =[bel®(n)]=U {Diag (ejgmj} U= fejgma [P () ()],
m=0 )

Definition 3. The discrete classical-like and Bargmann-like many-parameter DFT we define by the
following way

@ _ r(aad..ava) _[ 4@ . igs(m)am _1:N’1 j=s(m)a,
F@=F [e(n)]=U1diag| e u't=>e?

(KN (Fn(M],  (6)

m=0

BF® = BFonta) —[he® (n) |:= {diag[ej j} U ZeJ

where a=(a,,8,,8,,...,8y_) -

HEn(] (D
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2. Quaternion MPT

2.1. Quaternion algebra
The space of quaternions denoted by H(R)were first invented by W.R. Hamilton in 1843 as an

extension of the complex numbers into four dimensions [23-24]. General information on quaternions
may be obtained from [26]-[27].

Definition 4. Numbers of the form *q = al+bi+cj+dk, where a,b,c,d R are called quaternions,
where 1) 1 is the real unit; 2) i, j,Kk are three imaginary units.

We speck that quaternions *q=a+bi+cj+dk are written in the standard format. The addition and
subtraction of two quaternions ‘g, =a, +x,i+Y,j+zk and *q, =a, + X,i + y,j+ 2,k are given by
4q1 * 4q2 = (al +b1i +c1j+d1k)i(a2 +b2i +C2j+d2k) =

=(a,+a,)+ (b, +b,)i+ (b £b,)j+ (b, +b,)k.
The product of quaternions for the standard format Hamilton defined according as:

‘g0 'q, = (a +bi+cj+dKk)e(a, +byi+c,j+d,k)=(aa,—bb,—cc,-dd,)+
+(ab, +ba, +c,d, —dc, )i+(ac, +ca, +db, —bd,)j+(ad, +da, +bc, —cb, )k,
where i2=j?=k?*=-13) icj=—icj=K, ick=-koi=j, jok=—Koj=i.
The set of quaternions with operations of multiplication and addition forms 4-D algebra

A, (R |1, i,j,k) =R+Ri+Rj+Rk over the real field R. Number component a and direction
component °r =bi +cj+dk € R® were called the scalar and 3-D vector parts of quaternion, respectively.
Now these components are denoted as S(‘q)=aeR and V(q) = *r =bi +cj+dk . A non—zero element
*r =bi +cj + dk is called pure vector quaternion. Hence, according to W. Hamilton every quaternion is
the sum of a scalar number and a pure vector quaternion*q= a+ (bi+cj+dk)=a+°r=5(q)+V(Q),
where a=S(*g)and V(*g)=">r. Since i-j=k, then a quaternion ‘q = a-+bi+cj+dk =(al+bi)+

+(cj+dicj)=(a+bi)+(c+di)cj=z+wo] is the sum of two complex numbers z=a-+hi,
w = +di with a new imaginary unit j. So, every quaternion can be represented in several ways:

e asa4-D hypercomplex number *q = a+bi+cj+dk,a,b,c,d eR (standard format);

e asasum of ascalar and vector parts gq=a+ °r (1,3-D hypercomplex format);
e asa2-D hypercomplex numbers *’q=z+woj, z,weC (2,2D complex format of q).
The product of quaternions for the last two forms Hamilton defined as:
4q1 °© 4Clz = (Zl +W, S (Zz +W, °j)= (2122 _le_vz) + (lez +21W2) °],
4q1 © 4q2 = (@ +h)e(a,+1,) :(a1a2 _(Fl’FZ))-i_(alfz +a,r + [Fl XFz])*
where S(*g,<‘q,)=aa, - (°r|°r,), V(‘q,° ‘0,) =3, +3,°r,+ °r,x°r,. Here (°r,|°r,)=hb, +cc, +d,d,
and °r,x°r,=i(cd, -dc,)—j(bd, —db,)+k(bc, —cb,) are scalar and vector products, respectively.
The commutative property of multiplication does not hold for quaternion numbers: “q, o ‘g, # ‘g, ° ‘q,.

However, if the vector parts of quaternion numbers are parallel to each other °r, || °r,, then their product
is commutative.
Definition 5. Let “q = a+bi+cj+dk eH(R) be a quaternion (a,b,c,d eR). Then
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‘g = a+bi+cj+dk=a-bi—cj—dk, ‘g = a+°’r=a-"°r

is the conjugate of “q, N(*q) | ‘qll=va? +b? +¢? +d? =G “q =+ *qe ‘g is the norm of “q, and
tr(“q) =2a="q+ *q is the trace of *q. Therefore ‘q® —tr(“q)*q+N?(*q) =0.

Proposition 1. We have ‘g, ‘g, ="‘q,c%q, and N(*g,°*q,)=N("q,)-N(‘q,)f or every
‘g, *q, e H(R). Note that [1|=1, [[i]|=]|j|=|k|=1.

Definition 6. Quaternions {4p‘ N(*p) =1} of unit norm area called unit quaternions.

The unit quaternions p form a 3D hypersphere S* = HI(R) ~ R*. For each quaternion ‘g with nonzero

norm the following quaternion

‘g _a+’r_ a N I P

-
T QH ERENE qH I QH el rH T qH I

=cosa + *psina =cosa +(wi+ w,j+ K)sina

is an unit quaternion, where [*r|=vb’ +¢’ +d°, *u="r/|r|, cosa=a/|'q|, sina=|"r|/|'d|, 1 =b/|’r],
=/ |°r, s =c/|°r| and p= s+ u,j+ sk Obviously,

‘q=|*a|“p=|‘a|-[cosa+ nsina |=|"q|-[cosa +(s4i+ wj+ k)sine |-
Introducing the polar coordinates on S?
a:H“qHCOSa, b= (”h”cos;x)sina, c:(H“qHsin ycosé?)sina, d :(H“qusin ysin Q)Sina,
we may write
‘q = |*d|[ coser+(icosy +jsinycos@+ksinysin@)sina | = |“q|[ cose + *n(r,0)sina |,

where  6,90€[0,7], a<€[0,27), *u(y,0=icosy +jsinycos@+ksinysindeS* is a pure unit
guaternion.

Figure 1. Each 3D vector ji e S®of unit length can play a role of classical imaginary unit.
For example, the special elements *i, *j, °k are such elements.

In particular, for *q, =°r, = bi+cj+dk and ‘g, =°r, =h,i+c,j+d,k, we obtain
°r, o °r, =—<3r1)| 3r2>+[3rl>< 3r2)], r?="ro 3r=—<3r| 3r> =—”3r”2,
2
and for a pure quaternion *p eS? = R® with unity norm |°u| =1we have °y’ =—H3pH =-1,where S2

denotes the unit 2-D sphere in 3-D space R®. This unit-vector product identity represents the
generalization of the complex-variable identity i> =—1. This means that, if in the ordinary theory of
complex numbers there are only two different square roots of negative unity (+i and —i ) and they differ
only in their signs, then in the quaternion theory there are infinite numbers of different square roots of
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negative unity *p=">p(y,0)= (,uxi +pj+ yzk) =(cosy-i+sinycos@-j+sinysind-k)eS?, which
gives °p’=°p’(y,0)=-1. Here *p(y,0) =(cosy,sinycosd,sinysing) being still that point on the
spherical surface, which has for its rectangular coordinates cosy,sinycosé,sinysin@ (see figure 1).
In the feature we will omit left index: u(y,6) = *u(y,0).

2.2. Quaternion-valued functions
The main subject of this section are quaternion-valued discrete exponential functions.

Definition 7. A functions *f (n) : [0, N —1] — HI(R) are called quaternion-valued discrete functions. They
have the following form: *f(n) = f,(n)+ f,(n)i+ f,(n)j+ f,(N)k.

432 4.4m o 4m
The exponential map is exp(‘q) = 1+“q+i+....+ g +o=) q Clearly for ‘g=acR,
2! m! = m!
exp(*q) =e* is the usual real exponent map on R. In particular, if 0 in R is the null element, then
3
exp(0) =1. If *q=">r isanon-zero element in R® then exp(*r) =cos(|| *r||) +|| Sr”sin(|| *r)).
r
3
Theorem 1. For *g=a+°reH(R) exp(a+ °r) =e*exp(’r) =¢* [cos(” rlh +|| 3r ||sin(|| °r ||)j.
r

Obviously, [|exp(’r)|=1 and | exp(r)|=|lexp(a+°r)||=¢e® In general case exp(‘q,)oexp(‘q,)=

=exp(“a,) o exp(“q,) and exp(a, + “0,) = exp(“q,) oexp(“q,) = exp(*a,) o exp(*ay).
However, if the vector parts of quaternion numbers “q, =a, +°r, and “q, =a, + °r, are parallel to each

other (i.e.,’r,||°r,), then product exp(‘q,)cexp(‘q,) is commutative exp(‘q,)-exp(‘q,)=
= exp(4q2) © exp(“ql) and exp(4q1 + 4q2) = eXp(Aql) © eXp(4q2) = exp(4q2) Oexp(4q1) .

2.3. Quaternion Fourier transforms

Before defining the quaternion Fourier transform, we briefly outline its relationship with Clifford
Fourier transformations. Quaternions and Clifford hypercomplex number were first simultaneously and
independently applied to quaternion-valued Fourier and Clifford-valued Fourier transforms by Labunets
[28] and Sommen [29]-[31], respectively, at the 1981. The Labunets quaternion transforms were over
quaternion with real and Galois coefficients (i.e., over H[R] and H[GF(p)]). They generalize both
classical and co-called number theoretical transforms (NNTs) and proposed for application to fast signal
processing. Ernst [32] and Delsuc [33] in the late 1981s, seemingly without knowledge of the earlier
works of Labunets and Sommen proposed bicomplex Fourier transforms over 4D commutative
hypercomplex algebra of bicomplex numbers (C@®C). Note that the bicomplex algebra is quite
different from the quaternion algebra; among general things, bicomplex multiplication is commutative,
but quaternion one is noncommutative. For this reason, the Ernst and Delsuc transforms are direct sum
of ordinary Fourier transforms (i.e., duplex Fourier transform). They are a little bit similar in kind to
quaternion Fourier transforms. Ernst and Delsuc's transforms were two-dimensional and proposed for
application to nuclear magnetic resonance (NMR) imaging.

Two new ideas emerged in 1998-1999 in a paper by Labunets [34] and Sangwine [35]. These were,

firstly, the choice of a general root * p of —1 (aunit quaternion with zero scalar part) rather than a basis
unit (i,j or k) of the quaternion algebra, and secondly, the choice of a general roots
o =1, 7,6, *1 =, (7,6, Py =y (712 Oyy) OF  —1 (see cloud of imaginary units on
figure 1) in Clifford algebra to create multi-parameter and fractional Fourier-Clifford transforms (with
eigenvalues g (o ®) gmn@) = g Malnath) |y
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Labunets, Rundblad-Ostheimer and Astola [36]-[40] used the classical and number theoretical
quaternion Fourier and Fourier-Clifford transforms for fast invariant recognition of 2D, 3D and nD
color and hyperspectral images, defined on Euclidean and non-Euclidean spaces. These publications
give useful interpretation of quaternion and Cliffordean Fourier coefficients: they are relative
quaternion- or Clifford-valued invariants of hyperspectral images with respect to Euclidean and non-
Euclidean rotations and motions of physical and hyperspectral spaces. It removes the veil of mysticism
and mystery from quaternion- and Clifford-valued Fourier coefficients. In the works of scientists
F.Brackx, H. De Schepper, F. Sommen, and H. De Bie [41]-[48] mathematical theory of Fourier-Clifford
transforms accepted the final completeness, beauty and elegance.

According to Theorem 1, for non-zero « € R and a non-zero ‘gq=a+ 3pcexp(“qoz) :exp((a+ 3p)a) =

3
=e™ exp(°ra)=e* (COS(” e+ I 3" |
n

have e""?* =cos(a) +u(p,O)sin(a). For a=wtand a=a, =27k /N (k=0,1..,N -1) we obtain
guaternion-valued discrete harmonics

eu(wk)%”kn .

27 . (27
=g =cos(Wkn] +u(;/k,9k)sm(Wkn),

sin(| 3p||a)]. In particular case, for ‘q=">p=pn(y,0) we

where each quaternion harmonic g =exp(—27ru(yk,9k)kn/ N) has its own imaginary unit
n = n(y,6) = =(c0osy, -i+siny, cos,-j+sinysing, -k)eS?, k=0,1,..,N-1.

Due to the non-commutative property of quaternion multiplication, there are two different types of
guaternion Fourier transforms (QFTSs). These QFTs are the left- and right-sided QFTs (LS-QFT and RS-
QFT), respectively.

Definition 8. The direct discrete quaternion Fourier transforms of f(n):[0,N -1] - H(R) are defined as

N-1

4Q|:(k|7/k’0k)=Q‘¢‘(“{,0){4.':(1,])}=%Ze—u(nv‘9k),\jr 4f( TZ kn 4f(n), (8)
15
N &

QK| 8) = Q0 [t} =L St e "N L L nyge ()
\/ﬁn:o

where QF, FQ are LS-QFT and RS-QFT, ¢ = (5,7, 7n.1), 0=(6,,0,,..., N71).

We see, that 4QF(k|;/k,¢9k) and 4FQ(k|yk,0k) depend on 2(N-2) parameters (7,6,),

ke{1,2,...,N-14\{0O,N/2} if N isevenand on 2(N —1) parameters (7,,6,), ke{1,2,..,N-1} if N
is odd.
Definition 9. The inverse quaternion Fourier transforms are defined as

if 9 (OF(K k,e (7. 6,) R ll:no4 F(k|y.60,), 10
(M=0Q {Q (k7 ) Z P(V K k)+p(7/k’0k)]|_ ) Q ( |}/ ) (10
) = Q" (FQUK 74,00} =2 =3 QR (K ) osf - R

[H(?Ck 0.+ r(xs Hk)]R

2.4. Quaternion fractional and many-parameter Fourier transforms
‘n(.,0)="n0), vk =0,1..,N-1) then quaternion Fourier matrices QJF,FQ contains

. 80 . . .
commutative entries e N . For this reason they have the same real-valued eigenfunction as

3 3
ordinary DFT  but with quaternion-valued eigenvalues {J_rl,isu(7,t9)}={e "(7'6)5”/2}s=0-

QF |h,(n))=7Q|h,(n)) = *n(y,6)|h,(n)), where {h,(n)}. " is the set of discrete Hermite functions.
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Hence, we can define fractional and multi-parameter quaternion Fourier transforms by the following
way.

Definition 10. For single parameter o € Tor,, and multi-parameter (ao,...,aN_l)eTorzﬁ‘t we introduce
fractional and multi-parameter quaternion Fourier transforms (FrQFT and MPQFT)

OF“(y,0)= %egu(vmyem)-S(m)-a | h (k )> <hm (n)| = HDiag (6311(70,90)5(0)-& , g RO o) s - @ MO0y S(N-Dyar ) H
m=0

ha (K)) (B ()] =

=H- Dlag (6311(‘/0*90)'5(0)'% ’egl’-(“/1»91)'5(1)0-1 . egll(“lelveNfl)'S(N—1)'Uval ) . HJrl

N-1 3
QF* (y, G) = .7Z'Q(°‘1v°‘27---v0w,1) (,Y, 9): z e 1@ O )-5(M)-ty
m=0

Due to the non-commutative property of quaternion multiplication, there are left- and right-sided
transforms (LS-FrQFTs, LS-MPQFTs and RS-FrQFTs, RS-MPQFTS).

Definition 11. The direct discrete LS-FrQFTs, LS-MPQFTs and RS-FrQFTs, RS-MPQFTs of
f(n):[0,N -1] > H(R) are defined as

|QF“ (K[7.0)) = QF“ (v.0)|f(n)) = Nie*‘m“ Wmolh ())(h, () [£(n)),

-1

[FQ" (k17,0)) = 7Q" (v, 0) () = [h(n)|f(n)> R (N 5)}

=0

‘QF“ (k |Ya e)> — Qf(ao'al"”’a""l) (Y, 9)|f(n)> 263

mm s o[ (k))(h, (n)] £()),

|FQ* (k[7,0)) = FQUo2) (y,0)|£(n)) = z<h (M [£(n) o Mt B=e |y (K)),

According to physics and engineering tradition, it is sometlmes convenient to refer to the quaternion
3 o -qL, -
constant e ™™ a5 a quaternion-valued phasor.

2.5. Fast quaternion Fourier transform
For fixed integer r (re{LZ,...,n}) and p,,q, e{O,l,...,Z”" —1} let
ALPra) _A(pr ) ( a(p,)lgb(qr ) A(pr ( a(pr) ) A(qr ( b(a,) )=
on- r+l
zﬂfl' 2" T ZH*T ZH*T
L..,&" 1,..,1;®Diag,,. {1...60% 1.1t =Diag,, s 1 L., 5™ 1., 2] L. 60 1,018,

Pr Gr Pr Pr

where a=a(p,),b=b(q,) are integers depending on positions p, and g, =q, +2"", respectively, and

= Dlag on-r on-r

e=exp(2zjl2"). Let fartherAzn,( - 1):: Diag,,, (1,51‘2"1,52'2"1,.. @y 2”) H AP (& ( )
| ®A,. (s2"")=Diag,. (11,..1)®Diag,,. (16,6 ,...e@ e )=

-1 2
- I I () (1P I I (p+2"") ( p2™ I I (pr P +2"") P | gPr 2
- Azn T (1 )C_B Azn T ( P 4on-r )_ Azn T+l (1 P 4on-r )

p,=0
Now we are going to use the radix- (2r *,2"") representation of p, qe{Ol 1} p=p(k,,s,)
=27, +s,, q(k,,5,) = p(k,,s,) +2"", where k €{01,...27" -1}, 5, €{0,1,....2" -1} and re{L,2,.., }

in fast Fourier transform. We can write diagonal matrices of FFT (for all r e {1, 2,..., } ) as
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L ®(1,. ®4,. (677))=
T AGE 9k ) (o5 2" T A stk 2 42
s Sy S Sy S, S
= [A plos @ ) @AY (5q<kr,sr))J: AT (L o | €050
k,=0 s,=0 k,=0 s,=0

The fast DFT has the foIIowing form

a1 (SIS S R P T

P I Co n | o
znfr H znfr 1 anl' H anr
\/ 2n 2 |: ) AZ”’r }|: Iznfr - I on-r :| ‘\l 2” r=1 2 {Aznr Izn—r _Azn—r Izn—r :|

or in details (usmg (12))

. QRS Ky ,sr),a(k, s, s 2" 2z ks ),a(k, S,
}'ZH([H HA(p( ). ))(p(k o q(ks))} {H HJP( )a ke ) 72./4)D
(14)

k,=0 s,=0 k,=0 s,=0

n o 1ot q (p(ke,Sr ),a(Ke 1S )) on 5k 5)
_I I I I | I ﬁ p »Sp ) q(Ky Sy s 2"" Pk, 5 )0k, S,
[ ( Pk, ;) 5q(k,,s,))'~]zn (7:/4)} .

=0 k=0

The first generalization of (17) is based on Jacobi matrices J{"® (¢{™?) instead of J5(z/4):

F (91,9500 ﬁ[znlzl—f[A(p(k sk, s»( o) ;(kz";)) 3Pt sath s ((Drpq))ﬂ_ (15)

0 k=0

Obviously, this transform is n-2"" - parameter Fourier-like transform. The second generalized is based
2 (P0) (QIBF | Qi -
& )—)Azfq(e‘ |e’ )

i in APk s .atk s (45
on arbitrary phasors in A7 (1 gtk 5.)

p(krs¢)

F (010219, B1, B, B ﬁ(zﬁuﬁlwm'Sf)"*<k~5r>>(e"ﬂf”|e"ﬂﬁ)-J;’fk“s”"“k““((p:“”)]} (16)

r=1

It is 2n-2""- parameter Fourier-like transform.

We are going to use this expression for obtaining many-parameter quaternion Fourier-like transform.

Indeed, if *u(q,6,)="n(@,0), vk =0,1,...,2" —1), then quaternion Fourier matrices QF, FQ contains
. .  CaeoZe W02 o n

commutative quaternion-valued entries e 2 =¢" (where ¢ =e 2" s a primitive N™ -root

of 1 in H(R), where N =2") and for this reason quaternion DFT have the same fast algorithms as
ordinary DFT:
OF (91,9941 BuBovcss Byt V1 Y2100 70101,0,,..0, ) =

N K K n(y? 6P (2,69 (ke 5.k, e,
_ [A;E(“S’)‘q("s'”(LSe RO | gm0 ﬂr) 33t 5)((Pr( s))} ,
fQ((Pl’(pzi-"v(l)n;Bl’ﬁz’---’Bn;71’72’---’Vn;ﬂliozv'"gn):

N = 00k 5,) (P 00 B GO\ . TP s a5 (((Keis)
_ HH[ (Rse PR | g )‘]2 ) (ple )J

s, =0 k. =0

(17)

where labels LS and RS at e WOF A and rs € w07 DA indicate about the left side or the right side
multiplications, respectively. They are 4n-2"*- parameter quaternion Fourier-like transforms QF (u))

and FQ (o) with parameters @ =(@,,@,,....0,:B1. B, Boi¥1 Y20 70i01,0,,..0,).
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Let us introduce a bunch of binary N -D crypto-keys b={b,}"_ ={(b,(0),....b,(p)....b,(N-1)}"  and
define

Cworae s i () =0

v €0 it (p) =1,

Then quaternion Fourier-like transform with the branch of binary crypto-keys

n (2""-12"tg
— (p(kese ). a(ke 5. ) *u(r? 6P BP *n(r? 0P B Pkesse ) a(ke,Se) [ o(KeiSe)
-7:@("°|b)_H(H H[Azn (b,(p)e o, o) € )"]zn (o )B
5 =0 Kk =0

r=1

generalizes both QF (@) and FQ(m).

3. Quaternion all-pass filters
In this section we introduce special classes of many-parametric all-pass discrete cyclic filters. The
output/input relation of the discrete cyclic filter is described by the discrete cyclic convolution:

y(n) = Filt . {x(n)}= gh(n?m)x(m) = (h*x)(n) = (" - Diag {|H (k)| }-F) - x(n),

where x(n),y(n) are input and output signals, respectively, h(n) is the impulse response,
H (k) =[H (k)| = Hh(n)} is the frequency response, & is difference modulo N and * is the
N

N-1
symbol of cyclic convolution, Filt . = [h(n@m)} is the cyclic (N x N) —matrix with the kernel h(n)

N n,m=0
We will concentrate our analysis on all-pass filters whose frequency response can be expressed in the
form H (k) =|H(k)|e”", where frequency response magnitude is constant for all frequencies, for

example, [H(k)|=1, k=0,12,..,N —1. So, for all-pass filter Filt, has the following complex-valued
impulse |h(n)) =7 -|e*) and frequency responses |H (k))=|e'"*’). Hence,

y(n) =Filt,. {x(n)} = (f* : Diag{e“”(k’}-f){x(n)}.
We are going to consider this filter as a parametric filter
Filt® =Filt{@a-2) = 7'. Diag{e"® }.F = 7' Diag{e" €",..., e }.F (18)
with N free parameters @ =(¢,,9,,...,®, ,)- Obviously, all-pass filter Filt’®’ (as linear transform) is
many-parameter unitary cyclic (N x N)—matrix, since
Filtl - Filt® = (7" Diag{e'}.7)-( 7' - Diag{e "'} -F )= 7" - Diag{e"* -e "} F=1.
Our the first natural generalization of (18) is based on an arbitrary unitary transform I/ instead of
Fourier transform F:
Filt{ = Filt{>-*) =1(" . Diag{e”* |-U = U' - Diag{e" ..., e |-U. (19)

The second generalized is based on quaternion-valued exponents noE B (p=01..,N-1) and

by () &
quaternion Fourier transforms fg(m|b) in (19):

. . 0 . 3 0Y 0 C(O 3 1191 al 3 NflY N-1 aNfl
Filt . (ao,yo,eo,mbo,b):}"g (m|b)'Dlag{b0(0)e WA A gt }j_—g (w]6). (20)

where o, = (g5, ), Yo = (75, are 78 ), 86 = (65,6500 ), by = (b (0), by (D),...., b, (N =1))

and (D:((Ply(Pz’---’(Pn;ﬁllﬂw---1Bn;711721---*Yn;elvez’---en)- Let E’:{bo»b}Z{bo’{br}:ﬂ}:{br}rzo and
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3.2" parameters  n2" parameters  n2"* parameters  n2" parameters  n2" parameters
—

® = (0,70,05:0) =| 05,70,05 :B1.Byrvs By 01 @200 Py V10T 1071:01,0,,...0,

All-pass Angles of phasors Jacobi angles Imaginary units

Then we can write
ilt. (&6 i WA oGl WA o a
Filt,, (@]6) =7 (o[6)-Diag{, o e "5 4%, | e*t®d | e AN LA (wfp)  (21)
instead of (21). It is (7n+6)-2""- parameter quaternion cyclic transform with parameters @ and with
bunch of binary crypto-keys b.

4. Conclusion

In this paper, we have shown a new unified approach to the many-parametric representation of complex
and quaternion Fourier transforms. This form is the product of sparse rotation matrixes and it describes
fast algorithms for introduced many-parameter transforms. Defined representation of many-parameter
transforms (MPT) depend on finite set of free parameters, which could be changed independently of one
another. For each set of values of parameter we get the unique orthogonal transform. We are going to
use these MPTs for constructing of novel Intelligent OFDM-telecommunication systems The new
systems will use inverse MPT (or inverse MPT) for modulation at the transmitter and direct MPT (or
direct MPT) for demodulation at the receiver.
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