УДК 630*52:630*174.754

B.A. Усольцев^{1,2}, И.С. Цепордей², В.П. Часовских¹, А.А. Осмирко¹

¹ Уральский государственный лесотехнический университет, г. Екатеринбург ² Ботанический сад УрО РАН, г. Екатеринбург

АДДИТИВНЫЕ РЕГИОНАЛЬНЫЕ МОДЕЛИ ФИТОМАССЫ ДЕРЕВЬЕВ И ДРЕВОСТОЕВ ЕВРАЗИИ. СООБЩЕНИЕ 2: РОД *Betula* L.

Ключевые слова: березовые насаждения, биосферная роль лесов, фитомасса деревьев и древостоев, аллометрические модели, пробные площади, биологическая продуктивность, аддитивность уравнений, трансконтинентальные таблицы фитомассы.

Впервые на уникальных по объёму базам фактических данных о фитомассе деревьев и древостоев на примере рода *Betula* L. разработаны трансевразийские аддитивные модели фитомассы березы, и тем самым решена проблема совмещения аддитивности и всеобщности моделей. Модель фитомассы деревьев гармонизирована двояко: в ней устранена внутренняя противоречивость «фракционных» и общего уравнения, и кроме того, она учитывает региональные различия равновеликих деревьев как по величине общей, надземной и подземной фитомассы, так и по ее фракционной структуре. Аддитивная модель фитомассы древостоев гармонизирована также по двум уровням, один из которых обеспечивает принцип аддитивности фракций фитомассы, а второй связан с вводом «фиктивных» переменных, локализующих модель по экорегионам Евразии. Модель демонстрирует различия фитомассы древостоев не только по абсолютным ее значениям для стволов, хвои, ветвей и корней, но и по их соотношениям, т.е. по структуре фитомассы. Предложенные модели и соответствующие таблицы для оценки фитомассы деревьев и древостоев березы дают возможность определения их фитомассы в различных экорегионах Евразии по данным измерительной таксации.

V.A. Usoltsev, I.S. Tsepordey, V.P. Chasovskikh, A.A. Osmirko

ADDITIVE REGIONAL MODELS OF TREE AND STAND BIOMASS FOR EURASIA. MESSAGE 2: GENUS *Betula* sp.

Key words: genus Betula sp., equations additivity, biosphere role of forests, biomass of trees and forests, allometric models, sample plots, biological productivity, transcontinental tables of biomass.

When using the unique in terms of the volumes of databases on the levels of a tree and stand of the genus *Betula* sp., the trans-Eurasian additive allometric models of biomass of trees and forests for Eurasian birch forests are developed for the first time, and thereby the combined problem of model additivity and generality is solved. The additive model of tree biomass of *Betula* is harmonized in two ways: it eliminated the internal contradictions of the component and the total biomass equations, and in addition, it takes into account regional differences of trees of equal sizes not only on total, aboveground and underground biomass, but also on its component structure, i.e. it reflects the regional peculiarities of the component structure of tree biomass. The additive model of forest biomass of *Betula* is harmonized in two levels too, one of which provides the principle of additivity of biomass components, and

the second one is associated with the introduction of dummy independent variables localizing model for eco-regions of Eurasia.

В предыдущем и настоящем выпусках журнала «Эко-потенциал» впервые на уникальных по объёму базах фактических данных о фитомассе деревьев и древостоев на примере подрода Pinus L. (Усольцев и др., 2018) и рода Larix Mill. разработаны трансевразийские аддитивные модели фитомассы сосны и лиственницы, и тем самым решена совмещенная проблема аддитивности и всеобщности моделей. Модели фитомассы деревьев гармонизированы двояко: в них устранена внутренняя противоречивость «фракционных» и общего уравнения, и кроме того, они учитывают региональные различия равновеликих деревьев как по величине общей, надземной и подземной фитомассы, так и по ее фракционной структуре. Аддитивная модель фитомассы древостоев подрода Pinus L. гармонизирована по трем уровням, один из которых обеспечивает принцип аддитивности фракций фитомассы, второй связан с вводом «фиктивных» переменных, локализующих модель по экорегионам Евразии, и третий согласовывает структуру фитомассы сосновых культур и естественных сосняков посредством бинарной переменной. Аддитивная модель фитомассы древостоев рода Larix не включает деление исходных данных по происхождению древостоев и соответственно гармонизирована по двум уровням. Модели показывают различия фитомассы древостоев не только по абсолютным ее значениям для стволов, хвои, ветвей и корней, но и по их соотношениям, т.е. по структуре фитомассы.

В настоящей статье предпринята первая попытка разработки локализованных по регионам Евразии аддитивных аллометрических моделей фитомассы деревьев и древостоев еще одной лесообразующей породы - берёзы (род *Betula* L.). Эти модели послужат основой для составления региональных трансевразийских нормативов для оценки фитомассы деревьев и древостоев березы.

Объекты и методы

В последние годы для территории всей Евразии были впервые сформированы и опубликованы базы данных о фитомассе деревьев в количестве 7300 определений (Усольцев, 2016; Usoltsev, 2016) и древостоев лесообразующих пород в количестве более 8000 определений на пробных площадях (Usoltsev, 2013). Более 70% материалов приходится на территорию России и страны бывшего СССР. Род *Betula L*. включает в себя около 120 видов, из которых данные о фитомассе деревьев имеются по 7 и о фитомассе древостоев - по 13 из них.

Из упомянутых баз данных взяты материалы в количестве 1076 модельных деревьев четырех викарирующих видов рода Betula (соответственно $B.\ alba\ L.,\ B.\ platyphylla$ Suk., $B.\ costata$ Trautv. и $B.\ dahurica$ Pall.), распределенных по 11 экорегионам и обозначенных соответственно 11 фиктивными переменными от X_0 до X_{10} (табл. 1). Распределение пробных площадей, на которых взяты модельные деревья в экорегионах Евразии, показано на рис. 1.

Таблица 1. Схема кодирования фиктивными переменными региональных массивов фактических данных фитомассы 1076 деревьев березы

			Блок фиктивных пере- Диапазон Диапазон Чи										Число	
Реги-	Вид				Dil	OK (рик	тив.	ных	. 110	pe-	' '		
он*	Betula L.						Μ¢	НН	ЫΧ			диаметров	высот	наблюде-
OH	Detuta L.	X_{l}	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X_{10}	дерева, см	дерева, м	ний
3CE	B. alba L.	0	0	0	0	0	0	0	0	0	0	0,5÷21,0	2,1÷18,8	12
EP	B. alba L.	1	0	0	0	0	0	0	0	0	0	0,9÷41,8	2,2÷27,1	160
Ур	B. alba L.	0	1	0	0	0	0	0	0	0	0	1,0÷31,0	2,7÷26,4	193
3Сст	B. alba L.	0	0	1	0	0	0	0	0	0	0	0,5÷48,0	1,7÷25,0	571
CC	B. alba L.	0	0	0	1	0	0	0	0	0	0	0,2÷44,7	1,5÷26,6	64
ДВсев	B. platyphylla S.	0	0	0	0	1	0	0	0	0	0	6,7÷27,1	6,6÷14,2	5
ДВюг	B. platyphylla S.	0	0	0	0	0	1	0	0	0	0	9,1÷30,5	12,5÷26,0	7
ДВюг	B. costata Tr.	0	0	0	0	0	0	1	0	0	0	8,6÷30,2	15,3÷20,9	7
ДВюг	B.dahurica Pall.	0	0	0	0	0	0	0	1	0	0	9,8÷30,8	13,7÷20,4	7
Кит	B. platyphylla S.	0	0	0	0	0	0	0	0	1	0	0,2÷28,0	1,5÷20,0	17
Яп	B. platyphylla S.	0	0	0	0	0	0	0	0	0	1	4,3÷16,4	7,2÷19,8	33

^{*} Обозначения регионов здесь и далее: ЗСЕ — Западная и Средняя Европа, широколиственные леса; ЕР — Европейская часть России, центральная часть; Ур — средний и южный Урал; ЗСст — Западная Сибирь, степь; СС — Средняя Сибирь, южная тайга; ДВсев — Дальний Восток, северная тайга; ДВюг — Дальний Восток, Приморье; Кит — Северо-Восточный Китай и Монголия; Яп — Японские острова.

Рис. 1. Распределение пробных площадей, на которых выполнены измерения фитомассы (кг) 1076 деревьев берёзы (*Betula* L.) на территории Евразии.

Вторая база данных, использованная в наших расчетах, содержит материалы 520 пробных площадей с определениями фитомассы берёзовых древостоев (т/га). Род Betu-la L. представлен в наших расчетах пятью видами (соответственно B. alba L., B. tortuosa Ldb., B. platyphylla Suk., B. ermanii Cham., B. costata Trautv.), распределенными по 11 экорегионам и обозначенными соответственно 11 фиктивными переменными от X_0 до X_{10} (табл. 2). Распределение пробных площадей, на которых определена фитомасса берёзовых древостоев в экорегионах Евразии, показано на рис. 2.

Таблица 2. Схема кодирования региональных массивов фактических данных фитомассы 520 древостоев березы

Реги-	Вид	_	Блок фиктивных перемен- Диапазоны:									Число				
он*	Betula L.			•		Н	ЫΧ		•			возраста,	густоты,	среднего	средней	наблю
											1	лет	тыс.	диаметра,	высоты,	дений
		X_{I}	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X_{10}		экз/га	СМ	M	
3CE	B. alba L.	0	0	0	0	0	0	0	0	0	0	8÷80	0,35÷14,15	1,8÷28,5	2,1÷26,5	89
ЕРсев	B. alba L.	1	0	0	0	0	0	0	0	0	0	10÷110	0,69÷27,6	1,9÷20,3	$2,0 \div 25,1$	41
ЕРюг	B. alba L.	0	1	0	0	0	0	0	0	0	0	5÷95	$0,28 \div 304,0$	1,1÷31,2	1,7÷30,3	161
Ур	B. alba L.	0	0	1	0	0	0	0	0	0	0	5÷67	0,77÷42,9	1,1÷22,0	2,6÷23,4	44
3Сст	B. alba L.	0	0	0	1	0	0	0	0	0	0	5÷100	0,29÷43,4	2,0÷33,0	3,1÷25,8	66
I I CER	B. alba L. B. tortuosa L.	0	0	0	0	1	0	0	0	0	0	37÷100	0,38÷5,92	5,0÷24,0	4,0÷23,6	20
ССюг	B. alba L.	0	0	0	0	0	1	0	0	0	0	15÷100	0,33÷10,17	4,4÷30,2	1,5÷25,1	68
ВС	B. alba L. B. ermanii Ch.	0	0	0	0	0	0	1	0	0	0	13÷175	0,26÷83,6	1,0÷32,4	2,0÷19,0	9
ДВюг	B. costata Tr.	0	0	0	0	0	0	0	1	0	0	60÷190	0,15÷5,34	25,0÷48,2	15,3÷26,1	10
Кит	B. platyphylla S.	0	0	0	0	0	0	0	0	1	0	35÷100	0,50÷1,64	12,3÷20,0	10,6÷20,0	5
Яп	B. platyphylla S. B. ermanii Ch.	0	0	0	0	0	0	0	0	0	1	10÷47	0,27÷20,06	2,7÷23,5	4,3÷22,5	7

*3СЕ — Западная и Средняя Европа, широколиственные леса; ЕРсев — Европейская часть России, север; ЕРюг — Европейская часть России, юг; Ур — Урал; ЗСст — Западная Сибирь, степь и лесостепь; ССсев — Средняя Сибирь, северная часть; ССюг — Средняя Сибирь, южная часть; ВС - Восточная Сибирь, северная тайга; ДВюг — Приморье; Кит — Северо-Восточный Китай; Яп — Японские острова.

Рис. 2. Распределение пробных площадей с измерениями фитомассы (т/га) 520 насаждений берёзы (род $Betula\ L$.) на территории Евразии.

Анализ фитомассы деревьев и древостоев выполнен на основе аллометрических аддитивных моделей. Согласно структуре «дисагрегированной» (расчленяемой) (disaggregation model) трехшаговой аддитивной системы моделей (Tang et al., 2000; Dong et al., 2015), общая фитомасса, оцененная по исходному уравнению, расчленяется на фракции согласно схеме, представленной на **рис. 3**. Коэффициенты регрессионных моделей всех трех шагов оцениваются одновременно, что обеспечивает аддитивность фитомассы всех фракций - общей, промежуточных и исходных (Dong et al., 2015).

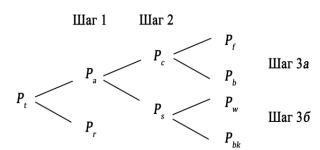


Рис. 3. Блок-схема «дисагрегированной» (расчленяемой) трехшаговой аддитивной модели фитомассы. Обозначения: P_t , P_r , Шаг 3а P_a , P_c , P_s , P_b , P_w и P_{bk} — соответственно фитомасса дерева (кг) или древостоя (т/га): общая, подземная (корней), надземная, кроны (хвои и ветвей), ствола (древесины и коры), хвои, ветвей, древесины ствола и коры ствола, кг.

Результаты и обсуждение

1 Аддитивная модель фитомассы на уровне деревьев

Рассчитаны исходные аллометрические модели

$$\ln P_i = a_i + b_i (\ln D) + c_i (\ln H) + d_i (\ln D) (\ln H) + \sum g_{ij} X_j, \tag{1}$$

где P_i — фитомасса i-й фракции, кг; D — диаметр ствола на высоте груди, см; H — высота дерева, м; i — индекс фракций фитомассы: общей (t), надземной (a), корней (r), кроны (c), ствола в коре (s), листвы (f), ветвей (b), древесины ствола (w) и коры ствола (bk); j — индекс (код) фиктивной переменной, от 0 до 10 (см. **табл. 1**). $\Sigma g_{ij}X_j$ — блок фиктивных переменных для i—й фракции фитомассы j—го экорегиона. Модель (1) после потенцирования имеет вид

$$P_i = e^{ai} D^{bi} H^{ci} D^{di(\ln H)} e^{\sum gijXj}. \tag{2}$$

По программе многофакторного регрессионного анализа Statgraphics выполнен расчет коэффициентов уравнений (1) и получена их характеристика, которая после введения поправок на логарифмическое преобразование по Γ .Л. Баскервилю (Baskerville, 1972) и приведения ее к виду (2) дана в **табл. 3**. Все регрессионные коэффициенты уравнений (2) при численных переменных значимы на уровне вероятности $P_{0.95}$ и выше, и уравнения адекватны исходным данным.

Путем подстановки регрессионных коэффициентов независимых уравнений из **табл. 3** в структуру аддитивной модели, модифицированную авторами и представленную в **табл. 4**, по трехшаговой схеме пропорционального взвешивания получили трансконтинентальную аддитивную модель фракционного состава фитомассы деревьев березы с двойной гармонизацией, окончательный вид которой дан в **табл. 5**.

Модель действительна в диапазоне фактических данных высоты и диаметра ствола модельных деревьев, приведенных в **табл.** 1. Путем табулирования полученной модели (**табл.** 5) по задаваемым значениям D и H и по значениям фиктивных переменных, локализующих общую модель по экорегионам, можно получить в итоге региональные нормативы, аддитивные по фракциям фитомассы и предназначенные для ее оценки в березовых древостоях Евразии. В частности, для уральского региона подобный региональный норматив показан в **табл.** 6.

Таблица 3. Характеристика независимых (исходных) аллометрических уравнений деревьев берёзы

$adjR^2*$	0,994		0,990	0,967		0.943	0,993		0.904	0,942	0,992	0,976	
	e -0,2028 X10		e -0,1651 X10	e -0,5880 X10		e -0,1624 X10	e -0,1711 <i>X10</i>		e -0,0632 X10	e -0,1679 X10	e 0,1128 X10	e -0,0279 X10	
	e -0,1679 <i>X9</i>		e 0,0302 X9			e -0,1169 X9			e 0,3481 X9	e -0,2313 X9			
	e -0,2068 X8	1		e -1,3743 X8		e -0,3157 X8	_	-		e -0,3648 X8	e 0,3657 X8	e 0,3147 X8	
	e 0,0041 X7		e 0,1165 X7	e -0,8880 X7		e 0,3783 X7	e 0,0278 X7		e 0,3476 X7	e 0,3238 X7		e -0,0850 X7	
ний	e -0,0021 X6			e -0,8333 X6		$\overline{}$	e -0,0144 X6	1		e -0,3184 X6	e 0,3634 X6	e 0,0563 X6	
Компоненты регрессионных уравнений	e -0,4561 X5		e 0,0387 X5	e -1,3328 X5		e 0,5069 X5	e -0,1744 X5			e 0,4425 X5		e -0,2669 X5	
рессионн	e -0,3294 X4	IIIar 1	e -0,1782 X4	e -0,7439 X4	Mar 2	e -0,1988 X4	e -0,1740 X4			e -0,3575 X4		e 0,0258 X4	юдений.
ненты рег	e -0,3496 X3		e -0,1805 X3	e -0,8986 X3		e -0,2525 X3	e -0,1726 X3			e -0,4210 X3	e 0,1288 X3	e 0,2927 X3	исло набл
Компов	e -0,3636 X2		e -0,2954 X2	e -1,1927 X2		e -0,7432 X2	e -0,2172 X2		e -0,1476 X2	e -0,8970 X2	e 0,1412 X2	e -0,0997 X2	нный на ч
	e-0,2349 XI		e -0,2487 XI	e -0,5537 XI		e -0,3841 XI	e -0,2284 XI		e 0,3068 XI	e -0,5630 XI	e -0,0304 XI	e -0,0891 XI	ректирова
-	D 0,2073 (InH)		$D^{0,2486 (\ln H)}$	D 0,0918 (lnH)		$D^{0,4081 \text{ (ln}_{H})}$	$D^{0,1975~(\ln H)}$		$D^{0,2566 (\ln H)}$	$D^{0,4186({ m ln}_{H})}$	$D^{0,1577~(\ln H)}$	$D^{0,2395~(\ln H)}$	аdjR² – коэффициент детерминации, скорректированный на число наблюдений
	H-0,1937			$H^{-0,9141}$			$H^{0,9481}$			$H^{-0,3259}$		$H^{0,4611}$	г детерми
	D 1,7784		$D^{1,0769}$	D 2,5829		D 1,1568	$D^{1,0942}$			D 1,2209	$D^{1,1321}$	D 1,2064	фициен
	0,3509		0,1287	0,1638		0,1153	0,0665		0,0234	0,0687	0,0293	0,0161	² – коэф
Фрак- ция фито- массы	P_t		P_a	P_r		P_c	P_s		P_f	P_b	P_{w}	P_{bk}	* adjR

Таблица 5. Трехшаговая аддитивная модель фракционного состава фитомассы деревьев берёзы, реализованная по принципу пропорционального взвешивания

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Таблица 4. Структура трехшаговой аддитивной модели, реализуемой по принципу пропорционального взвешивания. Обозначения здесь и далее см. уравнение (1).

Шаг 1	$P_r = \frac{1}{1 + \frac{a_a D^{b_a} H^{c_a} D^{d_a(\ln H)} e^{\sum g_{aj} X_j}}{a_r D^{b_r} H^{c_r} D^{d_r(\ln H)} e^{\sum g_{rj} X_j}}} \times P_t$
	$P_a = \frac{1}{1 + \frac{a_r D^{b_r} H^{c_r} D^{d_r(\ln H)} e^{\sum g_{rj} X_j}}{a_a D^{b_a} H^{c_a} D^{d_a(\ln H)} e^{\sum g_{aj} X_j}}} \times P_t$
Шаг 2	$P_c = \frac{1}{1 + \frac{a_s D^{b_s} H^{c_s} D^{d_s(\ln H)} e^{\sum g_{sj} X_j}}{a_c D^{b_c} H^{c_c} D^{d_c(\ln H)} e^{\sum g_{cj} X_j}}} \times P_a$
	$P_{s} = \frac{1}{1 + \frac{a_{c}D^{b_{c}}H^{c_{c}}D^{d_{c}(\ln H)}e^{\Sigma g_{cj}X_{j}}}{a_{s}D^{b_{s}}H^{c_{s}}D^{d_{s}(\ln H)}e^{\Sigma g_{sj}X_{j}}}} \times P_{a}$
Шаг 3 <i>а</i>	$P_{f} = \frac{1}{1 + \frac{a_{b}D^{b_{b}}H^{c_{b}}D^{d_{b}(\ln H)}e^{\Sigma g_{bj}X_{j}}}{a_{f}D^{b_{f}}H^{c_{f}}D^{d_{f}(\ln H)}e^{\Sigma g_{fj}X_{j}}}} \times P_{c}$
	$P_{b} = \frac{1}{1 + \frac{a_{f} D^{b_{f}} H^{c_{f}} D^{d_{f}(\ln H)} e^{\sum g_{fj} X_{j}}}{a_{b} D^{b_{b}} H^{c_{b}} D^{d_{b}(\ln H)} e^{\sum g_{bj} X_{j}}}} \times P_{c}$
Шаг 3б	$P_{w} = \frac{1}{1 + \frac{a_{bk}D^{b_{bk}}H^{c_{bk}}D^{d_{bk}(\ln H)}e^{\Sigma g_{bkj}X_{j}}}{a_{w}D^{b_{w}}H^{c_{w}}D^{d_{w}(\ln H)}e^{\Sigma g_{wj}X_{j}}}} \times P_{s}$
	$P_{bk} = \frac{1}{1 + \frac{a_w D^{b_w} H^{c_w} D^{d_w(\ln H)} e^{\sum g_{wj} X_j}}{a_{bk} D^{b_{bk}} H^{c_{bk}} D^{d_{bk}(\ln H)} e^{\sum g_{bkj} X_j}}} \times P_s$

Таблица 6. Таблица для определения аддитивной фитомассы деревьев берёзы белой по высоте и диаметру ствола в уральском регионе

Н, м	Фракции фито-			Д	иаметр ств	ола, см		
11, M	массы	6	10	14	18	22	26	30
	Общая фито- масса	8,12	24,35	50,20	ı	1	-	ı
	Корни	1,76	8,29	22,00	ı	-	-	-
	Надземная	6,36	16,06	28,20	ı	-	-	-
	Крона	1,06	3,23	6,37	ı	-	-	-
6	Листва	0,33	0,88	1,59	ı	-	-	-
	Ветви	0,74	2,35	4,78	-	-	-	-
	Ствол в коре	5,30	12,83	21,84	-	-	-	-
	Древесина ство- ла	4,44	10,56	17,72	-	-	-	-
	Кора ствола	0,86	2,28	4,11	-	-	-	-

Продолжение таблицы 6

Массы 6 10 14 18 22 26 30		Descrive derma			П	HOMOTO CTD		лжение так	элицы о
Общая фитомасса 8,89 28,15 60,13 106,00 - - - - -	Н, м	Фракции фито-	-	10				26	20
Масса No.99 28,15 00,15 100,00 - - - - - - - - -			0	10	14	18	22	20	30
Надземная 8,03 23,62 46,90 77,03 - - - -		-	8,89	28,15	60,13	106,00	ı	-	-
Крона 0,88 3,29 7,63 14,05 - - - - - Листва 0,25 0,80 1,67 2,81 - - - - Евтви 0,62 2,48 5,97 11,24 - - - - Древесина створна 0,92 2,93 39,27 62,98 - - - Древесина створна 0,92 2,93 6,10 10,34 - - - Кора ствола 0,92 2,93 6,10 10,34 - - - Кора ствола 0,92 2,93 6,10 10,34 - - - Корин 0,51 2,82 8,55 19,40 2,97 - - Корин 0,51 2,82 8,55 19,40 2,97 - - Крона 0,72 3,04 7,67 15,12 25,77 - - Крона 0,72 3,04 7,67 15,12 25,77 - - Крона 0,73 23,55 6,14 12,40 21,49 - - Ствол в коре 8,21 25,12 51,51 86,98 130,92 - - Древесина створна 0,90 3,14 7,02 12,62 19,96 - - Кора ствола 0,90 3,14 7,02 12,62 19,96 - - Кора ствола 0,90 3,14 7,02 12,62 19,96 - - Кора ствола 0,90 3,14 7,02 134,54 216,81 322,54 - Кора на - 2,78 7,40 15,23 26,94 43,07 - Крона - 2,78 7,40 15,23 26,94 43,07 - Крона - 2,78 7,40 15,23 26,94 43,07 - Крона - 2,78 7,40 15,23 26,94 43,07 - Кора ствольа - 2,78 7,40 15,23 26,94 43,07 - Кора ствольа - 2,78 7,40 15,23 26,94 43,07 - Кора боре - 28,55 60,66 105,53 163,09 233,08 - Древесина стволна - 3,21 7,48 13,94 22,73 33,97 - Кора творе - 28,55 60,66 105,53 163,09 233,08 - Кора творе - 2,5,34 53,18 91,59 140,36 199,11 - Кора творе - 7,946 145,95 237,16 355,28 502,26 Корина - - 7,07 15,01 27,24 44,55 67,66 Корина - - 7,07 15,01 27,24 44,55 67,66 Древесина стволна - - 6,7,98 120,64 189,71 275,38 377,65 Древесина стволна - - 6,7,98 120,64 189,71 275,38 377,65		Корни	0,86	4,53	13,23	28,98	-	-	-
Пиства 0,25 0,80 1,67 2,81 - - - - -		Надземная	8,03	23,62	46,90	77,03	-	-	-
Пиства 0,25 0,80 1,67 2,81 - - - - -		Крона	0,88	3,29	7,63	14,05	-	-	-
Ветви	10	Листва	0,25	0,80	1,67		-	-	-
Ствол в коре Лревесина ство- ла 7,16 20,33 39,27 62,98 -		Ветви	-	2,48	5,97		-	-	_
Древесина ство- ла							-	_	_
Кора ствола 0,92 2,93 6,10 10,34 - - - - Общая фитомасса 9,44 30,97 67,73 121,50 193,76 - - Корни 0,51 2,82 8,55 19,40 2,97 - - Надземная 8,93 28,15 59,18 102,10 156,69 - - Крона 0,72 3,04 7,67 15,12 25,77 - - Пиства 0,20 0,69 1,53 2,73 4,29 - - Евгви 0,53 2,35 6,14 12,40 21,49 - - Ствол в коре 8,21 25,12 51,51 86,98 130,92 - - Древесина ствола 0,90 3,14 7,02 12,62 19,96 - - Кора ствола 0,90 3,14 7,02 12,62 19,96 - - Общая фитомасса - 33,26 74,02 134,54 216,81 322,54 - Корни - 1,93 5,96 13,78 2,47 46,39 - Надземная - 31,33 68,06 120,76 190,03 276,14 - Крона - 2,78 7,40 15,23 26,94 43,07 - Крона - 2,78 7,40 15,23 26,94 43,07 - Крона - 2,85 60,66 105,53 163,09 233,08 - Древссина ствола - 25,34 53,18 91,59 140,36 199,11 - Кора ствола - 3,21 7,48 13,94 22,73 33,97 - Общая фитомасса - 79,46 145,95 237,16 355,28 502,26 Корни - - 4,41 10,30 1,94 35,35 56,95 Надземная - - 7,07 15,01 27,24 44,55 67,66 Крона - - 7,07 15,01 27,24 44,55 67,66 Ствол в коре - 5,83 12,67 23,37 38,72 59,40 Ствол в коре - 5,83 12,67 23,37 38,72 59,40 Ствол в коре - 67,98 120,64 189,71 275,38 377,65 Древесина ствола - 60,25 105,88 165,12 237,96 324,22		Древесина ство-					-	-	-
14 Normacca 9,44 30,97 67,73 121,50 193,76 - - -			0.92	2 03	6.10	10.34	_	_	_
Масса 19,44 30,97 67,73 121,30 193,76 - - -		•						<u>-</u>	_
Надземная 8,93 28,15 59,18 102,10 156,69 - - -		масса	, i		, and the second			-	-
Крона 0,72 3,04 7,67 15,12 25,77 - - - Листва 0,20 0,69 1,53 2,73 4,29 - - Ветви 0,53 2,35 6,14 12,40 21,49 - - Древесина ство- ла 7,30 21,97 44,49 74,36 110,96 - - Кора ствола 0,90 3,14 7,02 12,62 19,96 - - Кора ствола 0,90 3,14 7,02 12,62 19,96 - - Корни - 1,93 5,96 13,78 2,47 46,39 - Надземная - 31,33 68,06 120,76 190,03 276,14 - Крона - 2,78 7,40 15,23 26,94 43,07 - Крона - 2,78 7,40 15,23 26,94 43,07 - Крона - 2,18 6,02 12,70 22,83 36,98 - Ствол в коре - 28,55 60,66 105,53 163,09 233,08 - Древесина ство- ла - 3,21 7,48 13,94 22,73 33,97 - Кора ствола - 3,21 7,48 13,94 22,73 33,97 - Общая фито- масса - 79,46 145,95 237,16 355,28 502,26 Корни - - 4,41 10,30 1,94 35,35 56,95 Надземная - - 75,05 135,65 216,95 319,93 445,31 Крона - - 7,07 15,01 27,24 44,55 67,66 Древесина ство- ла - 5,83 12,67 23,37 38,72 59,40 Ствол в коре - - 60,25 105,88 165,12 237,96 324,22			-					-	-
14						· ·		-	-
Ветви 0,53 2,35 6,14 12,40 21,49 - - Ствол в коре 8,21 25,12 51,51 86,98 130,92 - - Древесина ство- ла 7,30 21,97 44,49 74,36 110,96 - - Кора ствола 0,90 3,14 7,02 12,62 19,96 - - Кора ствола 0,90 3,14 7,02 12,62 19,96 - - Кории - 1,93 5,96 13,78 2,47 46,39 - Корни - 1,93 5,96 13,78 2,47 46,39 - Корна - 2,78 7,40 15,23 26,94 43,07 - Ветви - 2,18 6,02 12,70 22,83 36,98 - Ствол в коре - 28,55 60,66 105,53 163,09 233,08 - Древесина ство- ла -		Крона		-		· ·	25,77	-	-
Ствол в коре 8,21 25,12 51,51 86,98 130,92 - - Древесина ство- ла 7,30 21,97 44,49 74,36 110,96 - - Кора ствола 0,90 3,14 7,02 12,62 19,96 - - Общая фито- масса - 33,26 74,02 134,54 216,81 322,54 - Корни - 1,93 5,96 13,78 2,47 46,39 - Надземная - 31,33 68,06 120,76 190,03 276,14 - Крона - 2,78 7,40 15,23 26,94 43,07 - Ветви - 2,18 6,02 12,70 22,83 36,98 - Ствол в коре - 28,55 60,66 105,53 163,09 233,08 - Древесина ство- ла - 3,21 7,48 13,94 22,73 33,97 - Общая фито- м	14	Листва	0,20	0,69	1,53	2,73	4,29	-	-
Древесина ство- ла 7,30 21,97 44,49 74,36 110,96 - - -		Ветви	0,53	2,35	6,14	12,40	21,49	-	-
Кора ствола 0,90 3,14 7,02 12,62 19,96 - - -		Ствол в коре	8,21	25,12	51,51	86,98	130,92	-	-
Кора ствола 0,90 3,14 7,02 12,62 19,96 - - Общая фито-масса - 33,26 74,02 134,54 216,81 322,54 - Корни - 1,93 5,96 13,78 2,47 46,39 - Надземная - 31,33 68,06 120,76 190,03 276,14 - Крона - 2,78 7,40 15,23 26,94 43,07 - Ветви - 2,18 6,02 12,70 22,83 36,98 - Ствол в коре - 28,55 60,66 105,53 163,09 233,08 - Древесина ствола - 25,34 53,18 91,59 140,36 199,11 - Кора ствола - 3,21 7,48 13,94 22,73 33,97 - Общая фитомасса - - 79,46 145,95 237,16 355,28 502,26 Корни		_	7,30	21,97	44,49	74,36	110,96	-	-
Надземная -		Кора ствола	0,90	3,14	7,02	12,62	19,96	-	_
Корни - 1,93 5,96 13,78 2,47 46,39 - Надземная - 31,33 68,06 120,76 190,03 276,14 - Крона - 2,78 7,40 15,23 26,94 43,07 - Ветви - 0,60 1,38 2,54 4,10 6,08 - Ветви - 2,18 6,02 12,70 22,83 36,98 - Ствол в коре - 28,55 60,66 105,53 163,09 233,08 - Древесина ствола - 25,34 53,18 91,59 140,36 199,11 - Кора ствола - 3,21 7,48 13,94 22,73 33,97 - Общая фитомасса - - 79,46 145,95 237,16 355,28 502,26 Корни - - 4,41 10,30 1,94 35,35 56,95 Надземная -		Общая фито-	-	-				322,54	-
Надземная - 31,33 68,06 120,76 190,03 276,14 -			_	1 93	5 96	13 78	2 47	46 39	_
18 Крона - 2,78 7,40 15,23 26,94 43,07 - Ветви - 0,60 1,38 2,54 4,10 6,08 - Ветви - 2,18 6,02 12,70 22,83 36,98 - Ствол в коре - 28,55 60,66 105,53 163,09 233,08 - Древесина ство- ла - 25,34 53,18 91,59 140,36 199,11 - Кора ствола - 3,21 7,48 13,94 22,73 33,97 - Общая фито- масса - - 79,46 145,95 237,16 355,28 502,26 Корни - - 4,41 10,30 1,94 35,35 56,95 Надземная - - 75,05 135,65 216,95 319,93 445,31 Крона - - 7,07 15,01 27,24 44,55 67,66 22 Листва - - 5,83 12,67 23,37 38,72 59,40 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>· ·</td> <td></td>					-			· ·	
18 Листва - 0,60 1,38 2,54 4,10 6,08 - Ветви - 2,18 6,02 12,70 22,83 36,98 - Ствол в коре - 28,55 60,66 105,53 163,09 233,08 - Древесина ствола - 25,34 53,18 91,59 140,36 199,11 - Кора ствола - 3,21 7,48 13,94 22,73 33,97 - Общая фитомасса - - 79,46 145,95 237,16 355,28 502,26 Корни - - 4,41 10,30 1,94 35,35 56,95 Надземная - - 75,05 135,65 216,95 319,93 445,31 Крона - - 7,07 15,01 27,24 44,55 67,66 Ветви - - 5,83 12,67 23,37 38,72 59,40 Ствол в коре - - 67,98 120,64 189,71 275,38 377,65 </td <td></td> <td></td> <td></td> <td></td> <td>- i</td> <td>·</td> <td>· ·</td> <td></td> <td></td>					- i	·	· ·		
Ветви - 2,18 6,02 12,70 22,83 36,98 - Ствол в коре - 28,55 60,66 105,53 163,09 233,08 - Древесина ство- ла - 25,34 53,18 91,59 140,36 199,11 - Кора ствола - 3,21 7,48 13,94 22,73 33,97 - Общая фито- масса - - 79,46 145,95 237,16 355,28 502,26 Корни - - 4,41 10,30 1,94 35,35 56,95 Надземная - - 75,05 135,65 216,95 319,93 445,31 Крона - - 7,07 15,01 27,24 44,55 67,66 Зама ра - - 1,24 2,35 3,87 5,83 8,25 Ветви - - 5,83 12,67 23,37 38,72 59,40 Ствол в коре - - 67,98 120,64 189	1 2								
Ствол в коре - 28,55 60,66 105,53 163,09 233,08 - Древесина ствола - 25,34 53,18 91,59 140,36 199,11 - Кора ствола - 3,21 7,48 13,94 22,73 33,97 - Общая фитомасса - - 79,46 145,95 237,16 355,28 502,26 Корни - - 4,41 10,30 1,94 35,35 56,95 Надземная - - 75,05 135,65 216,95 319,93 445,31 Крона - - 7,07 15,01 27,24 44,55 67,66 Листва - - 1,24 2,35 3,87 5,83 8,25 Ветви - - 5,83 12,67 23,37 38,72 59,40 Ствол в коре - - 67,98 120,64 189,71 275,38 377,65 Древесина ствола <td>10</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>	10		_						_
Древесина ство- ла Кора ствола - 3,21 7,48 13,94 22,73 33,97 - Общая фито- масса Корни 79,46 145,95 237,16 355,28 502,26 Корни 4,41 10,30 1,94 35,35 56,95 Надземная 75,05 135,65 216,95 319,93 445,31 Крона 7,07 15,01 27,24 44,55 67,66 Диства - 1,24 2,35 3,87 5,83 8,25 Ветви 5,83 12,67 23,37 38,72 59,40 Ствол в коре 67,98 120,64 189,71 275,38 377,65 Древесина ство- ла			-						-
ла - 23,34 33,18 91,39 140,36 199,11 - Кора ствола - 3,21 7,48 13,94 22,73 33,97 - Общая фито-масса - - 79,46 145,95 237,16 355,28 502,26 Корни - - 4,41 10,30 1,94 35,35 56,95 Надземная - - 75,05 135,65 216,95 319,93 445,31 Крона - - 7,07 15,01 27,24 44,55 67,66 22 Листва - - 1,24 2,35 3,87 5,83 8,25 Ветви - - 5,83 12,67 23,37 38,72 59,40 Ствол в коре - - 67,98 120,64 189,71 275,38 377,65 Древесина ство-ла - - 60,25 105,88 165,12 237,96 324,22		-	-	28,33	60,00	103,33	103,09	233,08	-
Кора ствола - 3,21 7,48 13,94 22,73 33,97 - Общая фито- масса Корни 4,41 10,30 1,94 35,35 56,95 Надземная 75,05 135,65 216,95 319,93 445,31 Крона 7,07 15,01 27,24 44,55 67,66 Диства 1,24 2,35 3,87 5,83 8,25 Ветви 5,83 12,67 23,37 38,72 59,40 Ствол в коре 67,98 120,64 189,71 275,38 377,65 Древесина ство- ла		_	-	25,34	53,18	91,59	140,36	199,11	-
Общая фито- масса Корни 4,41 10,30 1,94 35,35 56,95 Надземная 75,05 135,65 216,95 319,93 445,31 Крона 7,07 15,01 27,24 44,55 67,66 Диства 1,24 2,35 3,87 5,83 8,25 Ветви 5,83 12,67 23,37 38,72 59,40 Ствол в коре 67,98 120,64 189,71 275,38 377,65 Древесина ство- ла			_	3 21	7 48	13 94	22.73	33 97	_
масса - - 79,46 143,93 237,16 353,28 302,26 Корни - - 4,41 10,30 1,94 35,35 56,95 Надземная - - 75,05 135,65 216,95 319,93 445,31 Крона - - 7,07 15,01 27,24 44,55 67,66 Листва - - 1,24 2,35 3,87 5,83 8,25 Ветви - - 5,83 12,67 23,37 38,72 59,40 Ствол в коре - - 67,98 120,64 189,71 275,38 377,65 Древесина ство-		1		J, <u>~</u> 1				,	
Корни - - 4,41 10,30 1,94 35,35 56,95 Надземная - - 75,05 135,65 216,95 319,93 445,31 Крона - - 7,07 15,01 27,24 44,55 67,66 Листва - - 1,24 2,35 3,87 5,83 8,25 Ветви - - 5,83 12,67 23,37 38,72 59,40 Ствол в коре - - 67,98 120,64 189,71 275,38 377,65 Древесина ство- ла - 60,25 105,88 165,12 237,96 324,22		-	-	-	79,46	145,95	237,16	355,28	502,26
Надземная 75,05 135,65 216,95 319,93 445,31 Крона 7,07 15,01 27,24 44,55 67,66 Листва - 1,24 2,35 3,87 5,83 8,25 Ветви 5,83 12,67 23,37 38,72 59,40 Ствол в коре - 67,98 120,64 189,71 275,38 377,65 Древесина ство 60,25 105,88 165,12 237,96 324,22			-	-	4,41	10,30	1,94	35,35	56,95
22 Крона - - 7,07 15,01 27,24 44,55 67,66 Листва - - 1,24 2,35 3,87 5,83 8,25 Ветви - - 5,83 12,67 23,37 38,72 59,40 Ствол в коре - - 67,98 120,64 189,71 275,38 377,65 Древесина ство- ла - 60,25 105,88 165,12 237,96 324,22			-	-		·	,	· ·	
22 Листва - - 1,24 2,35 3,87 5,83 8,25 Ветви - - 5,83 12,67 23,37 38,72 59,40 Ствол в коре - - 67,98 120,64 189,71 275,38 377,65 Древесина ство- ла - - 60,25 105,88 165,12 237,96 324,22			-	-	-	· ·		,	
Ветви - - 5,83 12,67 23,37 38,72 59,40 Ствол в коре - - 67,98 120,64 189,71 275,38 377,65 Древесина ство- ла - - 60,25 105,88 165,12 237,96 324,22	22			-		· ·			
Ствол в коре 67,98 120,64 189,71 275,38 377,65 Древесина ство- ла - 60,25 105,88 165,12 237,96 324,22				-		ŕ			
Древесина ство- ла - 60,25 105,88 165,12 237,96 324,22							· ·	· ·	
		Древесина ство-			-				
$\frac{1}{1}$		Кора ствола	-	-	7,74	14,76	24,59	37,42	53,43

^	_	-
Окончание	таюлины	h

Н, м	Фракции фито-			Д	иаметр ств	ола, см		
П, М	массы	6	10	14	18	22	26	30
	Общая фито- масса	ı	-	-	156,18	255,56	385,06	547,07
	Корни	ı	-	-	8,01	1,52	27,85	45,13
	Надземная	-	-	-	148,17	239,73	357,21	501,94
	Крона	-	-	-	14,68	27,16	45,18	69,67
26	Листва	-	-	-	2,17	3,63	5,54	7,94
	Ветви	-	-	-	12,50	23,53	39,64	61,73
	Ствол в коре	-	-	-	133,49	212,57	312,03	432,27
	Древесина ство- ла	-	-	-	118,17	186,66	272,05	374,48
	Кора ствола	ı	-	-	15,32	25,91	39,98	57,79

Иногда бывает невозможно замерить высоты деревьев на пробных площадях, и для подобных случаев при расчетах фитомассы на единице площади древостоя с применением предложенной модели (2) рассчитано вспомогательное уравнение, скорректированное на логарифмическую трансформацию

$$H = 1.9871 D^{0.8766} e^{0.2804/D} e^{-0.0168D} e^{0.0235XI} e^{-0.1800X2} e^{-0.0274X3} e^{0.0114X4} e^{-0.4268X5} e^{0.1510X6} e^{0.0188X7} \times e^{-0.0439X8} e^{-0.1642X9} e^{-0.0024XI0}; adjR^2 = 0.854.$$
(3)

Переменная (1/D) введена в структуру модели (3) для коррекции аллометрии, нарушенной у мелких деревьев вследствие сдвига диаметра D в верхнюю часть кроны, а переменная (D) — для коррекции аллометрии, нарушаемой у крупных, великовозрастных деревьев. Все регрессионные коэффициенты (3) при численных переменных значимы на уровне вероятности $P_{0,999}$.

Выполнено табулирование построенных аддитивных моделей (2) в формате Excel. Поскольку объем таблиц превышает формат журнальной статьи, ограничимся анализом некоторых региональных особенностей структуры фитомассы равновеликих деревьев берёзы по соответствующему фрагменту итоговых таблиц (табл. 7).

Их анализ показывает, что наибольшие значения общей фитомассы равновеликих деревьев имеют место в Западной и Средней Европе (97 кг) и в восточной части ареала – Приморье, Северо-восточный Китай, Япония (80-98 кг), находящихся под влиянием влажного климата соответственно Атлантического и Тихоокеанского океанов. Наименьшие показатели (62-70 кг) приходятся на Урало-Сибирский регион и северные территории Дальнего Востока (Магаданская область), характеризуемые выраженной континентальностью климата.

Поскольку было установлено (Cunia, Briggs, 1984; Reed, Green, 1985), что устранение внутренней противоречивости уравнений фитомассы путем обеспечения их аддитивности не обязательно означает повышение точности ее оценок, необходимо выяснить, достаточно ли адекватна полученная аддитивная модель и как ее характеристики соотносятся с показателями адекватности независимых уравнений?

С этой целью расчетные показатели фитомассы, полученные по независимым (исходным) и аддитивным уравнениям, сопоставлены с фактическими значениями фитомассы путем расчета коэффициента детерминации R^2 по формуле

Таблица 7. Фрагмент аддитивной таблицы фитомассы для деревьев диаметром 14 см и высотой 14 м по экорегионам и соответствующим видам Betula

B. platyphylla 79,54 14,98 64,55 13,08 11,57 51,48 43,83 1,51 7,65 B. platyphylla 82,37 11,10 71,27 12,35 58,92 47,68 11,24 2,14 10,21 B. dahurica ДВюг 72,65 79,22 11,05 61,60 6,57 10,01 1,04 9,87 Обозначения регионов и соответствующих видов Betula B. costata ДВюг 86,59 97,82 11,23 20,36 63,78 56,96 22,81 2,45 6,82 ДВюг В. platyphylla 97,22 84,00 14,10 69,90 13,21 12,41 60,90 1,69 9,00 B. platyphylla ДВсев 61,74 56,65 18,83 15,94 37,82 33,72 5,09 2,89 4,10 B. alba 70,08 11,74 58,34 46,83 40,35 11,51 60,6 6,49 \mathcal{C} 2,41 B. alba 89,89 10,12 3Сст 58,56 11,05 38,43 47,51 2,33 8,72 60,6 yp B. alba 59,18 67,73 44,49 8,55 7,67 1,53 6,14 51,51 7,02 B. alba 77,03 15,95 61,08 10,83 42,25 50,25 8,46 2,37 8,00 EP B. alba 97,42 25,48 71,94 47,86 14,47 12,95 57,47 3CE 1,52 9,61 Ствол в коре фитомассы Кора ствола Фракции Надземная Древесина Общая Листва Крона Корни Ветви ствола

берёзы	
деревьев	
уравнений	
ых аллометрических	
независим	
«приведённых»	
ца 8. Характеристика	
Таблиі	

	e -0,2028 X10	e -0,1537 X10	e -0,5880 X10	e -0,4417 X10	e -0,0848 X10	e -0,5484 X10	e -0,4174 X10	e 0,1128 X10	e -0,0279 X10
	e -0,1679 X9	e -0,0691 X9	e -0,7917 X9	e -0,2658 X9	e -0,0285 X9	e -0,0212 X9	e -0,3188 X9	e 0,3273 X9	e 0,4878 X9
	e -0,2068 X8	e -0,0080 X8	e -1,3743 X8	e 0,3223 X8	e -0,1066 X8	e -0,1898 X8	e 0,3244 X8		e 0,3147 X8
	e 0,0041 X7	e 0,1535 X7	e -0,8880 X7	e 0,4977 X7	e 0,0170 X7	e -0,0552 X7	e 0,5531 X7	e 0,4312 X7	e -0,0850 X7
_	e -0,0021 X6	e 0,1369 X6	e -0,8333 X6	e 0,5311 X6	e 0,0587 X6	e 0,5218 X6	e 0,5070 X6	e 0,3634 X6	e 0,0563 X6
ты модели	e -0,4561 X5	e -0,2828 X5	e -1,3328 X5	e 0,0512 X5	e -0,4764 X5	e 0,4111 X5	e 0,0011 X5	e 0,2345 X5	e -0,2669 X5
соэффицие	e -0,3294 X4	e -0,2375 X4	$e^{-0,7439 X4}$	e -0,6964 X4	e -0,1261 X4	e 0,3214 X4	e -1,0646 X4	e 0,2478 X4	e 0,0258 X4
ссионные к	e -0,3496 X3	e -0,2363 X3	e -0,8986 X3	e -0,5871 X3	e -0,1778 X3	e -0,0559 X3	e -0,7370 X3	e 0,1288 X3	e ^{0,2927 X3}
Регре	e -0,3636 X2	e -0,2337 X2	$e^{-1,1927 X2}$	e -0,6435 X2	e -0,1541 X2	e -0,1310 X2	e -0,7483 X2	e 0,1412 X2	e -0,0997 X2
	e -0,2349 XI						e -0,5225 XI	e -0,0304 XI	e -0,0891 XI
	$D^{0,2073(\ln H)}$	$D^{0,2239(\ln H)}$	$D^{0,0918(\ln H)}$			$D^{0,2920(\ln H)}$	$D^{0,3982({ m In}H)}$		$D^{0,2395(\ln H)}$
	$H^{-0,1937}$	$H^{-0,0524}$	$H^{-0,9141}$		$H^{0,3788}$	$H^{-0,9249}$	$H^{-1,6922}$	$H^{1,1330}$	$H^{0,4611}$
	$D^{1,7784}$	D 1,6413	$D^{2,5829}$	$D^{1,8504}$	$D^{1,6273}$	$D^{1,4970}$	$D^{1,9797}$	$D^{1,1321}$	$D^{1,2064}$
	0,3509	0,2345	0,1638	0,5365	0,0948	0,0596	0,3732	0,0293	0,0161
Фракция фито- массы	P,	P	P,	\mathbf{P}_c	P_s	\mathbf{P}_f	\mathbf{P}_b	P	P_{bk}
	Регрессионные коэффициенты модели Ф м	Регрессионные коэффициенты модели Верессионные коэффициенты модели В од 2003 (м.) 1 (м.) 1937 D 0,2073 (м.) 1 (м.) 1937 P (м.) 1937 D 0,2073 (м.) 1 (м.) 1937 P (м.) 1937 P (м.) 1937 P (м.) 1938 (м.) 19	Регрессионные коэффициенты модели Регрессионные к	Регрессионные коэффициенты модели р. 0,3509 D ^{1,7784} H-0,1937 D 0,2073(lnH) e-0,2349 XI e-0,3496 X3 e-0,3294 X4 e-0,4561 X5 e-0,0021 X6 e-0,1679 X9 р. 0,2345 D 1,6413 H-0,0524 D 0,0018(lnH) e-0,1608 XI e-0,2363 XI e-0,2365 X3 e-0,2375 X4 e-0,2828 X5 e-0,1369 X6 e-0,1679 X9 e-0,0691 X7 e-0,0691 X9 р. 0,1638 D 2,5829 H-0,9141 D 0,0918(lnH) e-0,537 XI e-1,1927 X2 e-0,8986 X3 e-0,1439 X4 e-1,1328 X5 e-0,8333 X6 e-0,8333 X6 e-0,8388 X7 e-1,3743 X8 e-0,7917 X9	Регрессионные коэффициенты модели р. 0,3509 D ^{1,7784} H-0,1937 D 0,2073(lnH) e-0,2349 X1 e-0,3496 X3 e-0,3294 X4 e-0,4561 X5 e-0,0021 X6 e-0,0041 X7 e-0,2068 X8 e-0,1679 X9 P _a 0,2345 S D 1,5413 H-0,9141 D 0,918(lnH) e-0,5337 X1 e-0,1937 X2 e-0,8986 X3 e-0,7439 X4 e-1,13328 X5 e-0,8333 X6 e-0,8333 X6 e-0,8333 X6 e-0,8333 X8 e-0,13743 X8 e-0,1917 X9 P _a 0,5365 D 1,8504 H-1,6367 D 0,9360(lnH) e-0,5445 X1 e-0,6445 X2 e-0,6904 X4 e-0,6904 X4 e-0,6311 X6 e-0,8333 X8 e-0,4371 X7 e-0,608 X8 e-0,6904 X4 e-0,6904 X4 e-0,691 X9 e-0,6904 X4 e-0,6904 X4 e-0,691 X9 e-0,6904 X4 e-0,6904	Регрессионные коэффициенты модели р. 0,3509 D ^{1,7784} H ^{-0,1937} D ^{0,2073(lnH)} e ^{-0,1349} X ¹ e ^{-0,1363} X ² e ^{-0,1369} X ³ e ^{-0,1364} X ⁴ e ^{-0,4561} X ³ e ^{-0,1369} X ⁶ e ^{-0,1679} X ⁹ e ^{-0,1678} X ⁹ e ^{-0,1679} X ⁹ e ^{-0,1678} X ⁹ e ^{-0,1678} X ⁹ e ^{-0,1679} X ⁹ e ^{-0,1688} X ⁹ e ^{-0,1668} X ⁹ e ^{-0,1668} X ⁹ e ^{-0,1668} X ⁹ e ^{-0,1668} X ⁹ e ^{-0,1688} X ⁹ e ^{-0,1668} X ⁹ e ^{-0,1688} X ⁹	Регрессионные коэффициенты модели р. 0,3509 D ^{1,7784} H-0,1937 D 0,2073(lnH) e-0,1349 X1 e-0,3656 X2 e-0,3496 X3 e-0,2353 X4 e-0,2351 X4 e-0,2353 X2 e-0,2353 X3 e-0,2353 X4 e-0,3354 X3 e-0,3354 X3 e-0,3354 X3 e-0,3354 X3 e-0,3545 X4 e-0,1354 X3 e-0,3354 X4 e-0,1354 X3 e-0,3354 X4 e-0,3554 X4	р. 0,3509 DI,7784 H-0,1937 D 0,2073(lnH) e-0,2349 XI e-0,3496 X3 e-0,3294 X4 e-0,44561 X3 e-0,0021 X6 e-0,0021 X6 e-0,0021 X6 e-0,1679 X9 e-0,1679 X9 p. 0,3509 DI,7784 H-0,1937 D 0,2023(lnH) e-0,1336 X1 e-0,2335 X3 e-0,2335 X4 e-0,2335 X3 e-0,1335 X4 e-0,1335 X7 e-0,0080 X8 e-0,1679 X9 p. 0,1536 D 1,6349 H-0,9141 D 0,0918(lnH) e-0,1337 X2 e-0,2335 X4 e-0,2335 X4 e-0,2335 X3 e-0,1335 X7 e-	р. 0,3509 D ^{1,7784} H ^{-0,1937} D ^{0,2073(lnH)} e ^{-0,2349 XI} e ^{-0,3496 X3} e ^{-0,3294 X4} e ^{-0,4561 X5} e ^{-0,4561 X5} e ^{-0,4561 X5} e ^{-0,1608 X1} e ^{-0,1698 X9} e ^{-0,1698 X9} e ^{-0,1398 X3} e ^{-0,1388}

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (Y_{i} - \widehat{Y}_{i})^{2}}{\sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2}}$$
(4)

где Y_i - фактическое значение; \hat{Y}_i - расчётное значение по модели; \bar{Y} - среднее фактическое значение всех (N) деревьев.

Для корректного сравнения адекватности независимых и аддитивных уравнений исходные данные приводим в сопоставимое состояние, т.е. независимые уравнения для всех фракций фитомассы рассчитываются по тем же данным, что и аддитивные уравнения для общей фитомассы. Характеристика таких «приведённых» уравнений дана в табл. 8.

Результаты сопоставления (**табл. 9**) свидетельствуют о том, что аддитивные уравнения не только внутренне непротиворечивы, но и для некоторых фракций обладают лучшими показателями адекватности по сравнению с независимыми уравнениями. Как уже отмечалось, при реализации принципа аддитивности цель повышения адекватности получаемых моделей по отношению к традиционным моделям не ставилась.

Таблица 9. Сравнение показателей адекватности независимых и аддитивных

уравнений фитомассы деревьев берёзы

JP WEITH THE	ивнении фитемисси деревье осрези												
Показатели		Фракции фитомассы											
Показатели	Pt	Pa	Pr	Ps	лые уравнения	Pb	Pf						
	Независимые уравнения												
R^2	0,979	0,987	0,821	0,971	0,979	0,962	0,964	0,926					
	Аддитивные уравнения												
R^2	0,979	0,986	0,819	0,964	0,953	0,931	0,967	0,966	0,927				

^{*} Обозначения см. **рис. 3** и уравнение (1). Жирным шрифтом выделены фракции, для которых значения R^2 по аддитивным моделям выше, чем по независимым.

Соотношение фактических значений и значений, полученных расчётом по независимым и аддитивным моделям фитомассы деревьев (**puc. 4**), показывает степень коррелированности названных показателей и во многих случаях отсутствие видимых различий в структуре остаточных дисперсий, полученных по двум названным моделям. Большая или меньшая величина R^2 той или иной модели определяется случайным положением фактических значений фитомассы наиболее крупных деревьев в доверительном диапазоне и неравномерной дисперсией, именно случайным из-за их малого числа и наибольшего вклада в остаточную дисперсию.

2. Аддитивная модель фитомассы на уровне древостоев

Рассчитаны исходные аллометрические модели

$$\ln P_i = a_i + b_i (\ln A) + c_i (\ln A)^2 + d_i (\ln H) + e_i (\ln D) + f_i (\ln N) + \sum g_{ij} X_j,$$
 (5)

где P_i — масса i-й фракции, т/га; A — возраст древостоя, лет; H — средняя высота древостоя, м; D — средний диаметр стволов, см; N — густота древостоя, тыс. экз/га; a-g — регрессионные коэффициенты; i — индекс фракций фитомассы: общей (t), надземной (a), корней (r), кроны (c), ствола в коре (s), листвы (f), ветвей (b), древесины ствола (w) и коры ствола (bk); j - индекс (код) в блоке фиктивных переменных, кодирующих 11 экорегионов, от 0 до 10 (см. **табл. 2**).

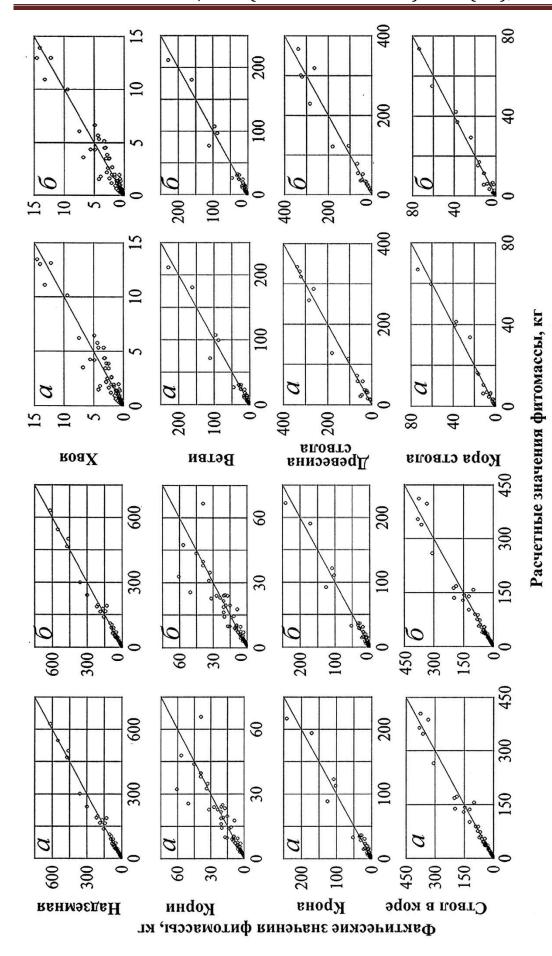


Рис. 4. Соотношение фактических значений и значений, полученных расчётом по независимым (а) и аддитивным (б) моделям фитомассы деревьев берёзы

Модель (5) после потенцирования приведена к виду

$$P_i = a_i A^{bi} A^{ci(\ln A)} H^{di} D^{ei} N^{fi} e^{\sum gijXj}$$

$$\tag{6}$$

Характеристика уравнений (5), полученная их аппроксимацией по фактическим данным фитомассы, после введения поправок на логарифмическое преобразование по Γ . Л. Баскервилю (Baskerville, 1972) и последующего потенцирования согласно (6) приведена в **табл. 10**. Все регрессионные коэффициенты уравнений (6) при численных переменных значимы на уровне вероятности $P_{0.95}$ и выше, и уравнения адекватны исходным данным.

Полученные уравнения (6) модифицированы согласно выше изложенному алгоритму (см. табл. 4), и окончательный вид трансконтинентальной аддитивной модели фракционного состава фитомассы берёзовых древостоев приведен в табл. 11. Модель действительна в диапазоне фактических данных возраста древостоев, средней высоты, среднего диаметра ствола и густоты древостоев, приведенных в табл. 2, и характеризуется двойной гармонизацией: одна из которых обеспечивает принцип аддитивности фракций фитомассы, а вторая связана с вводом фиктивных переменных, локализующих модель по экорегионам Евразии.

На следующем этапе исследования выполнено сопоставление адекватности построенной аддитивной модели (см. табл. 11) и независимых уравнений, показанных в табл. 10. Для корректного сопоставления из исходного массива данных удалены пробные площади с неполной фракционной структурой, т.е. оставлены лишь те записи, в которых имеются в наличии данные как по надземной, так и по подземной фитомассе. По модифицированному таким способом массиву исходных данных аппроксимированы уравнения (6), и их окончательный вид дан в табл. 12. Как аддитивная модель, так и независимые уравнения, протабулированы по фактическим массообразующим показателям массива фактических данных, и полученные расчетные значения фитомассы сопоставлены с фактическими по показателю R^2 , формула (4). Результаты сопоставления адекватности двух методов моделирования сведены в табл. 13 и свидетельствуют о том, что показатели адекватности двух систем уравнений близки между собой. Соотношение фактических значений и значений, полученных расчётом по независимым и аддитивным моделям фитомассы древостоев (рис. 5), показывает степень коррелированности названных показателей и во многих случаях - отсутствие видимых различий в структуре остаточных дисперсий, полученных по двум названным моделям. Большая или меньшая величина R^2 двух сравниваемых моделей определяется случайным положением фактических значений фитомассы наиболее продуктивных древостоев в доверительном диапазоне и неравномерной дисперсией, именно случайным из-за их малого числа и наибольшего вклада в остаточную дисперсию (см. рис. 5).

Таблица 13. Сравнение показателей адекватности независимых и аддитивных уравнений фитомассы берёзовых древостоев, рассчитанных с их регионализацией путем введения фиктивных переменных

Показатели				Фракці	ии фитом	иассы*					
Показатели	P_t	P_a	P_r	P_s	P_w	P_{bk}	P_c	P_b	P_f		
			Незави	симые у	равнения	A .					
R^2	0,950	0,958	0,768	0,958	0,959	0,677	0,793	0,808	0,672		
Аддитивные уравнения											
R^2	0,950	0,952	0,770	0,955	0,957	0,664	0,685	0,671	0,599		

Таблица 11. Трехшаговая аддитивная модель фракционного состава фитомассы древостоев берёзы, реализованная по принципу пропорционального взвешивания

	$- \times Pt$	-×Pt	-×Pa	-×Pa	-× Pc	-× Pc	-×Ps	$- \times Ps$
$Pt = 2,3124\ A^{-0,1332}H^{0,7126}\ D^{0,9612}N^{0,3588}e^{-0,1815XI}e^{-0,0816X2}e^{-0,0775X3}e^{0,0661X4}e^{0,3945X5}e^{-0,0498X6}e^{-0,1197X7}e^{0,1164X8}e^{-0,3918X9}e^{-0,1753X10}$	$ = \frac{1}{1 + 4.2973 \ A^{-0.0514} H^{-0.8074} D^{-0.0995} N^{-0.2774} e^{-0.0623 \times Z_e} e^{-0.2322 \times Z_e} e^{-0.2216 \times Z_e} e^{-0.8742 \times Z_e} e^{-0.1400 \times Z_e} e^{-0.1400 \times Z_e} e^{-0.2937 \times Z_e} e^{-0.6064 \times Z_e} e^{-0.1688 \times 1.0} e^{-0.1688 \times $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ Pc = \frac{1}{1 + 0.6875 \times 4^{0.0512} H^{0.8474} D^{-0.1816} N^{0.1056} e^{-0.0325 \times 2} e^{-0.0568 \times 3} e^{-0.1794 \times 4} e^{-0.0504 \times 5} e^{-0.0354 \times 6} e^{-0.0594 \times 7} e^{-0.3417 \times 8} e^{-0.1464 \times 9} e^{-0.0350 \times 10} = \frac{1}{1 + 0.6875 \times 4^{-0.0512} H^{0.8474} D^{-0.1816} N^{-0.0512} e^{-0.0325 \times 2} e^{-0.0568 \times 3} e^{-0.1794 \times 4} e^{-0.0504 \times 3} e^{-0.0594 \times 7} e^{-0.03512 \times 3} e^{-0.03512 \times 3$	$P_{S} = \frac{1}{1 + 1,4546 A^{-0.0512} H^{-0.8474} D^{0.1816} N^{-0.1056} e^{0.0410 X I} e^{0.0325 X Z_e^{-0.0568 X 3} e^{0.1794 X^4} e^{-0.0504 X 5} e^{-0.0354 X 6} e^{-0.0594 X 7_e^{-0.3417 X 8} e^{0.1464 X 9} e^{-0.0350 X 10}}$	$ Pf= Pf= H = \frac{1}{1+1,0638 A^{0.2756} H^{-0.0060} D^{0.2011} N^{-0.0619} e^{-0.7339 \times I} e^{-0.3901 \times Z} e^{-0.3044 \times 3} e^{-0.1165 \times 4} e^{-0.3807 \times 5} e^{-0.0796 \times 6} e^{-0.0880 \times 7} e^{-0.0999 \times 8} e^{-0.0531 \times 9} e^{-0.0605 \times 10}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ = \frac{1}{1 + 0.6275 A^{0.0128} H^{-0.2471} D^{-0.2128} N^{-0.1077} e^{-0.3358 \times I} e^{-0.0334 \times Z} e^{0.0269 \times 3} e^{0.2784 \times 4} e^{-0.4428 \times 5} e^{0.2478 \times 6} e^{-0.6875 \times 7} e^{0.0760 \times 8} e^{-0.1112 \times 9} e^{-0.1309 \times 10} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ш					日		日	

Таблиг	ta 12. Xa	арактерь	истика «п	гриведён	ных» не	зависимы	х алломет,	Габлица 12. Характеристика «приведённых» независимых аллометрических уравнений древостоев берёзы	уравнений	древосто	зв берёзы				
Фракция -отиф массы			-				Компонен	Компоненты регрессионных уравнений	сионных	үравнений					
P_t	2,3124			$D^{0,9612}$	N ^{0,3588}		e -0,0816 X2	e -0,0775 X3	e 0,0661 X4	e 0,3945 X5	e -0,0498 X6	$e^{-0.0498 X6} \mid e^{-0.1197 X7} \mid e^{0.1164 X8}$	e 0,1164 X8	e -0,3918 X9	e -0,1753 X10
P_a	1,6517	$A^{-0,2090}$	$H^{0,8778}$	$D^{0,9361}$	$N^{0,3510}$		e -0,0550 X2	e -0,0165 X3	e -0,0069 X4	e -0,6064 X5	e -0,0722 X6	e -0,2394 X7	e 0,2173 X8	e -0,3372 X9	e -0,1601 X10
P_r	1,0952		$H^{0,0956}$	$D^{1,1485}$	$N^{0,3720}$		e -0,1424 X2	e -0,2414 X3	e 0,2012 X4	e 1,1840 X5	e -0,1361 X6	$e^{0,1736X7}$	e -0,1831 X8	e -0,6657 X9	e -0,2145 X10
P_c	1,1172	A -0,1776		$D^{0,9756}$	$N^{0,2975}$		e -0,0078 X2	e -0,1091 X3	e 0,0754 X4	e -0,7359 X5	e -0,2624 X6	e -0,5189 X7 e 0,7750 X8	e 0,7750 X8	e -0,0917 X9	e -0,0870 X10
P_s	0,9788	$A^{-0,2058}$	$H^{1,0103}$	$D^{0,9320}$	$N^{0,3677}$		e -0,0752 X2	e -0,0080 X3	e -0,0320 X4	e -0,5999 X5	e -0,0420 X6	e -0,1966 X7	e 0,0914 X8		e -0,1809 X10
P_f	0,4269	A -0,4483		$D^{0,7928}$	$N^{0,4014}$	e 0,5982 XI	e 0,3858 X2		e 0,2668 X4	e 0,0045 X5	e 0,2816 X6	e -0,0717 X7	e 0,0151 X8	e 0,1340 X9	e -0,0361 X10
P_b	9099,0	0,6606 A -0,1105		$D^{1,0120}$	$N^{0,2620}$	e -0,2149 XI	e -0,0941 X2	e -0,2147 X3	e 0,0854 X4	e -0,8552 X5	e -0,3673 X6	e -0,5935 X7	e 0,7557 X8	e -0,1344 X9	e -0,0521 X10
P_{w}	0,0605	A 0,0259	_	$D^{0,9264}$	$N^{0,6999}$	e -0,0257 XI	e -0,0545 X2	e -0,0343 X3	e -0,0912 X4	e 0,7036 X5	e 0,1160 X6	e ^{0,1125} X7	e 0,0471 X8	e 0,0403 X9	e 0,1949 X10
P_{bk}	0,0380	A 0,0388	$H^{1,3128}$	$D^{0,7136}$	$N^{0,5922}$	e -0,3615 XI	e -0,0878 X2	e -0,0074 X3	e ^{0,1872 X4}	e 0,2607 X5	e 0,3638 X6	e -0,5749 X7	e ^{0,1232 X8}	e -0,0709 X9	e 0,0639 X10

Iей	
ател	
каз	
ющих пок	
ЦИХ	
>	
ccoopaa	
900	
acc	
M R	
H	
ний	
вне	
ypa	•
PIX	
TIPH	
ате	
MOL	
SION:	
J BC	
eMI	
ист	
ON C	
IBH	
J D C I	
са рекурсивной системы вспомогательных уравнений дл	
кај	
СТИ	
Сери	
aKT	
xap	
4.	
ца	
ЛПС	
I a	_

adjR²	699'0	0,940	0,888	
	0,0198 XIO	$-0.2138 \ X2 -0.1628 \ X3 -0.1072 \ X4 -0.3604 \ X5 -0.0708 \ X6 -0.2018 \ X7 0.1380 \ X8 0.1007 \ X9 -0.0516 \ X10 0.940 0.940 -0.0516 \ X10 0.940 -0.0516 \ X10 -0.0516 $	0,2071 X2 0,1503 X3 0,0031 X4 -0,3848 X5 -0,1110 X6 -0,0637 X7 0,3165 X8 -0,0928 X9 -0,2960 X10 0,888	
	-0,0720 X2 -0,1720 X3 -0,1480 X4 -0,7952 X5 -0,2341 X6 -0,7854 X7 -0,5169 X8 -0,4123 X9 0,0198 X10	0,1007 X9	-0,0928 X9	
	-0,5169 X8	0,1380 X8	0,3165 X8	
	-0,7854 X7	-0,2018 X7	-0,0637 X7	
75	-0,2341 X6	-0,0708 X6	-0,1110 X6	
сомпоненты регрессионных уравнений	-0,7952 X5	-0,3604 X5	-0,3848 X5	
ссионных	-0,1480 X4	-0,1072 X4	0,0031 X4	
нты регре	-0,1720 X3	-0,1628 X3	0,1503 X3	
Компоне	-0,0720 X2	-0,2138 X2	0,2071 X2	
	-0,5836 XI	-0,1841 XI	0,1218 XI	
			-2,2386 lnD	
	1	0,8906 lnH	1,0101 lnH	
	0,0217 0,7812 lnA	0,3700 lnA	-0,0983 lnA	
	-0,0217	-1,1075 0,3	3,8571	
массо образу ющие показа тели	Hul	Qul	lnΝ	

Таблица 15. Фрагменты аддитивной таблицы фитомассы древостоев берёзы в возрасте 50 лет (т абсолютно сухой массы на 1 га) по экорегионам

	Pbk	20,1	6,7	17,8	17,2	21,1	5,2	17,8	3,6	14,6	8,1	14,4
	F				1	2	4,		(4)	Ť	- X	<u> </u>
	Pw	119,5	47,0	109,8	96,1	91,0	35,7	76,0	32,7	8,69	46,6	7,26
	Ps	139,6	53,7	127,6	113,3	112,1	40,9	93,8	36,3	84,4	54,7	110,1
r/ra	Pr	39,2	18,5	29,6	24,6	42,1	43,7	26,7	20,7	27,2	12,6	27,1
Фитомасса, т/га	Pb	19,4	8,1	15,6	14,0	18,8	6,7	14,1	6,5	22,8	11,6	14,9
Фи	Pf	3,4	3,6	4,4	3,7	3,9	2,3	2,4	1,6	4,0	2,2	2,4
	Pc	22,7	11,7	20,0	17,7	22,7	9,0	16,6	8,1	26,7	13,8	17,3
	Pa	162,3	65,4	147,6	131,0	134,9	49,9	110,4	44,4	1111,1	68,5	127,4
	Pt	201,5	83,9	177,2	155,6	177,0	93,6	137,1	65,2	138,3	81,1	154,5
N, Tbic.	экз/га	8,0	2,3	1,6	1,5	1,1	2,5	1,0	2,4	1,3	8,0	9,0
7.50	, CM	21,0	10,4	15,9	15,3	16,5	7,2	15,8	8,5	15,2	16,1	20,3
7	и, и	20,8	11,6	19,3	17,5	17,9	9,4	16,5	9,5	12,4	13,8	21,2
D	ТиС	B. alba L. B. tortuosa L.	B. alba L.	B. alba L. B. ermanii Ch.	B. costata Tr.	B. platyphylla S.	B. platyphylla S. B. ermanii Ch.					
Эко-	регион	3CE	ЕРсев	ЕРюг	Уp	ЗСст	ССсев	ССюг	BC	ДВюг	Кит	Яп

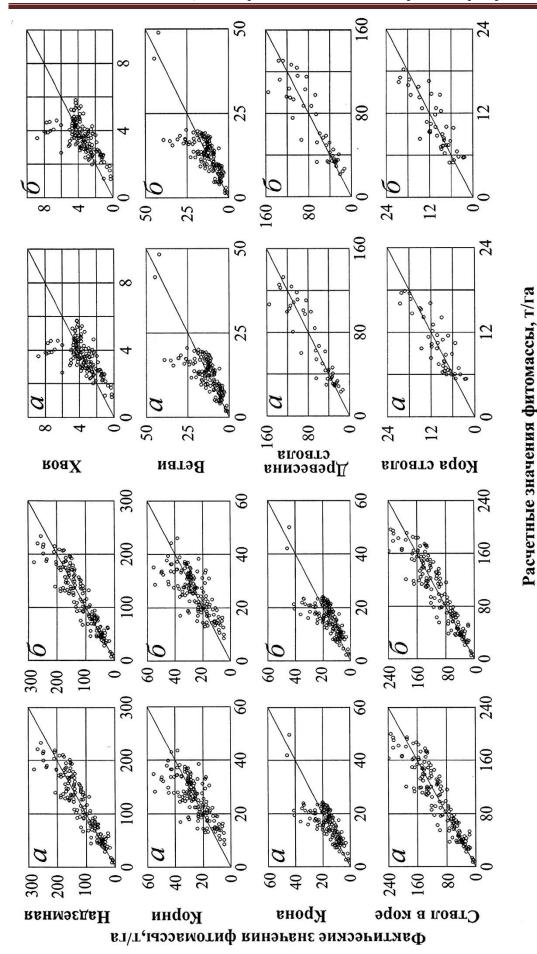


Рис. 5. Соотношение фактических значений и значений, полученных расчётом по независимым (а) и аддитивным (б) моделям фитомассы берёзовых древостоев

Построенная аддитивная модель (см. **табл. 11**) включает четыре численных независимых переменных. При табулировании ее возникает проблема, которая заключается в том, что мы можем задать из четырех переменных только возраст древостоя, а остальные три переменные могут быть введены в таблицу лишь в виде расчетных величин, полученных системой вспомогательных рекурсивных уравнений. Такие уравнения рассчитаны по исходному массиву фактических данных и показаны в **табл. 14**.

Результаты последовательного табулирования уравнений в **табл. 14** и **11** представляют громоздкую таблицу. Поэтому сравнительный анализ структуры фитомассы березняков разных экорегионов ограничим возрастом 50 лет (**табл. 15**).

Согласно **табл. 15**, наибольшие значения фитомассы (202 т/га) соответствуют европейским регионам, прилегающим к атлантическому побережью, а наименьшие (65-94 т/га) – северотаёжным регионам России. Промежуточное положение по показателю общей фитомассы (140-177 т/га) занимают березняки южной части их евразийского ареала.

Показатели фитомассы разных экорегионов различаются не только по абсолютной величине, но и по соотношениям массы разных фракций; например доля листвы в надземной фитомассе максимальная (3,6-4,6 %) в северотаёжных регионах России и минимальная (1,9-2,1%) в березняках территорий, прилегающих к атлантическому и тихоокеанскому побережьям.

Заключение

Таким образом, впервые на уникальных по объёму базам фактических данных о фитомассе деревьев и древостоев рода *Betula* L. разработаны трансевразийские аддитивные модели фитомассы берёзы, и тем самым решена проблема совмещения аддитивности и всеобщности моделей. Модель фитомассы деревьев гармонизирована двояко: в ней устранена внутренняя противоречивость «фракционных» и общего уравнения, и кроме того, она учитывает региональные (и соответственно, видовые) различия равновеликих деревьев как по величине общей, надземной и подземной фитомассы, так и по ее фракционной структуре.

Аддитивная модель фитомассы древостоев гармонизирована также по двум уровням, один из которых обеспечивает принцип аддитивности фракций фитомассы, а второй связан с вводом «фиктивных» переменных, локализующих модель по экорегионам Евразии. Полученная модель демонстрирует различия фитомассы древостоев не только по абсолютным ее значениям для стволов, хвои, ветвей и корней, но и по их соотношениям, т.е. по структуре фитомассы. Предложенные модели и соответствующие таблицы для оценки фитомассы деревьев и древостоев берёзы дают возможность определения их фитомассы в различных экорегионах Евразии по данным измерительной таксации.

Список использованной литературы

Усольцев В.А. Фитомасса модельных деревьев лесообразующих пород Евразии: база данных, климатически обусловленная география, таксационные нормативы. Екатеринбург: Урал. гос. лесотехн. ун-т, 2016. 336 с. ISBN 978-5-94984-568-4 (http://elar.usfeu.ru/handle/123456789/5696).

Усольцев В.А., Цепордей И.С. Шубаири С.О.Р., Дар Дж.А., Часовских В.П. Аддитивные аллометрические модели фитомассы деревьев и древостоев двухвойных сосен как основа региональных таксационных нормативов для Евразии // Эко-потенциал. 2018. № 1 (21). С. 27-47 (http://elar.usfeu.ru/handle/123456789/7261).

ЭКО-ПОТЕНЦИАЛ (ÈКО-РОТЕNCIAL) № 2 (22), 2018

Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Canadian Journal of Forest Research. 1972. Vol. 2. P. 49-53.

Cunia T., Briggs R.D. Forcing additivity of biomass tables: some empirical results // Canadian Journal of Forest Research. 1984. Vol. 14. P. 376-384.

Dong L., Zhang L., Li F. A three-step proportional weighting system of nonlinear biomass equations // Forest Science. 2015. Vol. 61. No. 1. P. 35-45.

Reed D.D., *Green E.J.* A method of forcing additivity of biomass tables when using nonlinear models // Canadian Journal of Forest Research. 1985. Vol. 15. P. 1184-1187.

Tang S., Zhang H., Xu H. Study on establish and estimate method of compatible biomass model // Scientia Silvae Sinica. 2000. Vol. 36. P. 19–27 (in Chinese with English abstract).

Usoltsev V.A. Forest biomass and primary production database for Eurasia. CD-version. The second edition, enlarged and re-harmonized. Yekaterinburg: Ural State Forest Engineering University, 2013. ISBN 978-5-94984-438-0 (http://elar.usfeu.ru/handle/123456789/3059).

Usoltsev V.A. Single-tree biomass data for remote sensing and ground measuring of Eurasian forests. CD-version in English and Russian. Yekaterinburg: Ural State Forest Engineering University. 2016. ISBN 978-5-94984-600-1 (http://elar.usfeu.ru/handle/123456789/6103).

Работа выполнена в рамках Государственного задания Ботанического сада УрО РАН.

Рецензент статьи: доктор сельскохозяйственных наук, профессор С.В. Залесов.