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Abstract. Over the past two decades, active airborne laser sensing technology has been 

intensively used to scan the forest cover, providing such morphometric indicators of trees as 

the width and projection area of the crown, the height of the tree. The author's database of 

harvest data of 1550 model trees of genus Picea spp. of Eurasia is used in the work. Allometric 

models of biomass components, including the crown width, tree height, winter temperatures 

and precipitation as independent variables, are designed. The biomass of all components of 

equal-sized trees is described by the propeller-shaped 3D picture. In cold regions, when 

precipitation increases, the biomass decreases, but as one moves to cold regions, it is 

characterized by an opposite or neutral trend. As the temperature increases in humid regions, 

the biomass increases, but as the transition to dry conditions begins to decrease. 

1. Introduction  
Global forests comprise 80% of plant biomass [1] and exceed the planet's atmosphere in carbon 

content [2]. Over the past two decades, active airborne laser sensing (ALS) technology has been 

intensively used to scan forest cover, providing spatial and temporal characteristics that are 

unprecedented in accuracy and speed. Thanks to this, the technology provides highly accurate 

information about large areas of forests in a very short time. Due to the ability to penetrate through the 

thickness of the canopy, laser sensing data characterize its vertical structure, including the understorey 

[3, 4]. The results of laser sensing, representing three-dimensional point clouds, provide detailed 

information in three dimensions about the structure of the forest [5], allow us to make segmentation of 

individual trees and obtain their morphometric characteristics [6, 7]. Laser sensors measure the 

distance to trees, to their structural elements, and to the ground by recording the time interval between 

the emission and return of laser pulses [8]. ALS device is placed on the aircraft, the position of which 

is recorded using the differential global positioning system GPS and inertial measurement units [9].  

Although remote sensing techniques for individual trees are less well understood compared to the 

achievements of traditional ground-based taxation [10], significant advances have been made in recent 

years in the field of individual tree detection and recording of crown shape and structure (crown width, 

tree height, projection area, and crown volume) based on new high-performance algorithms and the 

use of unmanned aerial vehicles (UAVs, or drones) [11-16]. 
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The crown width indicator was used to estimate the aboveground biomass of multi-stemmed trees 

and shrubs instead of the trunk diameter, since in such cases the trunk diameter was not very 

informative and difficult to measure [17, 18]. In particular, for Haloxylon Bunge communities growing 

in the deserts of Central Asia, allometric models of the relationship of aboveground biomass with the 

height of the tree (bush) and the width of the crown were developed [19]  

 ln𝑃𝑎 = 𝑎0 + 𝑎1ln𝐻 + 𝑎2ln𝐷cr  (1) 

where, Pa = aboveground biomass, kg; H = bush (tree) height, m; Dcr = crown width, m. Later, based 

on the aboveground biomass of 2635 Haloxylon trees taken from 100 sample plots established in the 

deserts of Kazakhstan, models (1) were calculated with determination coefficients from 0.841 to 

0.854, intended for both remote and ground inventory of Haloxylon communities [20]. 

The inclusion of temperature and precipitation as additional independent variables in allometric 

models of biomass significantly improves the accuracy of estimates and makes it possible to predict 

changes in biomass during climate shifts [21, 22]. However, such sensitive to climate variables models 

are developed for aboveground biomass without division into components and do not take into account 

the contribution of climate variables to the explanation of the variability of tree biomass. 

In this study we intend (1) when using the structure of biomass allometric model, we try reveal how 

the biomass components relate not only to morphometric indices of trees, namely, crown width and 

tree height, but also to temperature and humidity fluctuations on Eurasian territory and (2) what 

contribution to the explanation of the dispersion of biomass components have the morphometric 

indices of trees, and climatic variables. 

2. Methods and Materials 

To ask the above mentioned questions, we used the author's database of harvest data. The first version 

of the database consisted of 7330 trees [23], selecting from which 1006 trees, models (1) were 

calculated [24, 25]. The second version of the database already included 15 200 trees [26]. From the 

latest database, 1 550 Picea model trees were selected with measured tree height and foliage and 

branch biomass, crown width and length, and trunk biomass, 1 330 trees with trunk and aboveground 

biomass, 1 185 trees with crown length, 970 trees with crown width, and 400 trees with measured root 

biomass (table 1). The genus Picea spp. is mainly represented by Picea abies (L.) H. Karst. and 

P.obovata Ledeb.) and in a smaller number by P. schrenkiana F. et M., P. ajanensis (Lindl. еt Gord.) 

Fisch. ex Carr., P. koraiensis Nakai. and P. purpurea Mast. 

Table 1. Statistics of database samples for Picea trees in Eurasia. 

Statistic 

designation(a) 

Indices analyzed(b) 

H Lcr Dcr Ps Pb Pf Pa Pr/Pa 

Mean 13.8 7.9 2.7 136.4 20.4 12.6 168.1 0.24 

Min 0.43 0.70 0.25 0.005 0.001 0.004 0.011 0.065 

Max 44.8 29.5 10.9 4122.0 1259.6 305.0 5089.0 0.81 

SD 9.3 4.6 1.5 337.7 59.3 26.1 413.0 0.09 

CV, % 67.6 58.8 55.8 247.6 291.0 206.9 245.7 38.8 

n 1550.0 1185.0 970.0 1330.0 1550.0 1550.0 1330.0 400.0 
(a)

Mean = mean value; Min = minimum value; Max = maximum value; SD = standard deviation; CV = 

coefficient of variation; n = number of observations. 
(b)

H = tree height, m; Lcr= crown length, м; Dcr= crown width, m; Ps, Pb, Pf, Pa, Pr = stem over bark, branches, 

foliage, aboveground, root biomass in a completely dry condition correspondingly, kg. 

Based on the analysis of previous studies, we are inclined to believe that the most informative 

independent variables in assessing the biomass of trees by remote sensing are the width of the crown 

and the height of the tree. We need to test how sensitive such an allometric model is to climate shifts. 

For this purpose, the available data of geographical coordinates of model trees are plotted on the 

maps of mean January temperature (https://store.mapsofworld.com/image/cache/data/map_2014 

/currents-and-temperature-jan-enlarge-900x700.jpg) and mean annual precipitation 

(http://www.mapmost.com/world-precipitation-map/free-world-precipitation-map/) [27] (figure 1) and 

were joint with morphometric indices of model trees [28]. The refusal to use the average annual 

https://en.wikipedia.org/wiki/Carl_Linnaeus
https://en.wikipedia.org/wiki/Gustav_Karl_Wilhelm_Hermann_Karsten
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temperature in favor of the average January temperature was motivated earlier [29]. The resulting 

table of source data is included in the regression analysis procedure [30]. 

  

Figure 1. Distribution of biomass harvest data of 1550 spruce sample trees on the map of the mean 

January temperature, °C (a) and on the map of the mean annual precipitation, mm (b) [27]. 

3 Results and Discussion 

For regression analysis, the following model structure is proposed, including both morphometric 

characteristics of trees and climatic indicators as independent variables:  

ln𝑃𝑖 = 𝑎0 + 𝑎1(ln𝐷cr ) + 𝑎2(ln𝐻) + 𝑎3[ln(𝑇 + 40)] + 𝑎4(ln𝑃𝑅) + 𝑎5[ln(𝑇 + 40)] ∙ (ln𝑃𝑅)) (2) 

where, T = average January temperature, °C; PR = average annual precipitation, mm; 

[ln(T+40)]·(lnPR) = combined variable that characterizes the combined effect of temperature and 

precipitation. Since the average temperature of January in high latitudes has a negative value, for its 

logarithmic transformation in the model (2), it is modified to the form (T+40). The results of the 

calculation of the models (2) are shown in table 2. Geometrical presentation of the models (2) gives 

figure 2.When tabulating, the average values of Dcr and Н are used (table 1). 

Table 2. The results of calculating models (2). 

ln(Y) а0
(a) 

lnDcr lnH ln(T+40) lnPR 
[ln(T+40)]× 

(lnPR) 
adjR

2(b)
 SE

(c) 

ln(Ps) 91.3762 0.6862 2.1229 -27.1626 -15.0636 4.3568 0.974 0.39 

ln(Pf) 27.4702 1.2380 0.9116 -6.8624
(d)

 -5.0223 1.2126
(d)

 0.848 0.66 

ln(Pb) 30.2767 1.6641 1.0806 -7.9246 -5.5036 1.3599 0.908 0.61 

ln(Pa) 73.9962 0.9059 1.7195 -21.4481 -12.2168 3.4829 0.960 0.44 
(a)

The intercept hereafter is adjusted according to Baskerville’s [31] logarithmic transformation;  
(b)

adjR 
2
= the coefficient of determination, adjusted for the number of variables;  

(c)
SE = the standard error of the equation;  

(d)
– these regression coefficients are not reliable at the level of p = 0.95. 

As can be seen from table 1, the amount of harvest data on root biomass is three times less than of 

data on aboveground biomass, and this is a common property of all tree biomass databases [23, 24]. 

Due to the insufficient representation of our data on root biomass, we calculated models (2) for a 

relative indicator, namely, for the root/shoot ratio: 

ln(𝑃𝑟/𝑃𝑎) = 2.1956 + 0.3186(ln𝐷𝑐𝑟) − 1.2247[ln(𝑇 + 40)]; adjR
2
 = 0.288; SE = 0.30.  (3) 

The variability of the root/shoot ratio is explained by independent variables to the least extent 

(29%) compared to the components of aboveground biomass (table 2). The only statistically 

significant independent variables were crown width and average January temperature (t = 5.1 and 7.9 

> t999 = 3.3). A graphical interpretation of this relationship is shown in figure 3. 
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Figure 2. The theoretical changes in Picea spp. biomass components in relation to mean temperature 

of January (T) and mean rainfall (PR). Component designations: a, b, c, d – above ground, trunk, 

foliage and branch biomass, correspondingly. 

As we can see in figure 2, the dependence of all components of the biomass of equal-sized spruce 

trees on temperature and precipitation is described by a propeller-shaped 3D picture. In cold regions, 

when precipitation increases, the biomass decreases, but as it moves to warm regions, it is 

characterized by an opposite or neutral trend. As the temperature increases in humid regions, the 

biomass increases, but as the transition to dry conditions begins to decrease. In other species, in 

particular, two-needled pines, oak or larch, the patterns are sometimes different, and sometimes 

opposite [25, 28, 29]. This seems to be related to the biological characteristics of tree species and to 

the distribution of tree assimilates into its various components [32]. 

As in previous publications on the biomass of two-needled pines [28] and larch [33], the root/shoot 

ratio of spruce trees increases as the negative temperatures of January increase, i.e. in the direction of 

high latitudes (figure 3). This conclusion is in accordance with the previously obtained patterns of 

other authors. In particular, in the latitudinal gradient from the Pacific coast of China (35°N) to the 

permafrost regions of Yakutia (67°N), the root/shoot ratio of larch forests increases from 0.09 to 1.20 

[34]. On the territory of European Russia, the root/shoot ratio increases from 0.2 in the subtropics to 

0.6 in the subarctic zone [35]. 

 

Figure 3. Change of the theoretical R/S ratio in 

relation to tree crown width under different mean 

January temperature (T). 
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To assess the stability of the model, it is necessary to have information about the contribution of 

independent variables to the explanation of the variability of the dependent variable. Based on the 

results of the regression analysis, table 3 is suggested for this purpose. 

Table 3. Contribution of independent variables of models (2) to the explanation of variability of 

dependent variables, %. 

ln(Y) 

Independent variables 

lnDcr 

(I) 

lnH 

(II) 
I+II 

ln(Tm+40) 

(III) 

lnPRm 

(IV) 

[ln(Tm+40)] 

× (lnPRm) 

(V) 

III+IV+

V 

ln(Ps) 13.8 57.6 71.4 9.4 9.6 9.6 28.6 

ln(Pf) 42.8 42.7 85.5 4.3 5.5 4.7 14.5 

ln(Pb) 46.3 40.6 86.9 3.9 4.9 4.3 13.1 

ln(Pa) 20.8 53.1 73.9 8.5 8.8 8.8 26.1 

X ± σ
(a)

 30.9±16.1 48.5±8.2 79.4±7.9 6.5±2.8 7.2±2.3 6.9±2.7 20.6±7.9 
(a)

X ± σ = mean ± standard deviation. 

We can see in table 3 that climate variables explain the variability of trunk and aboveground 

biomass to the greatest extent (from 26 to 29 %) and needles and branches to the least extent (from 13 

to 15%). Morphometric variables explain the variability of the biomass of needles and branches to the 

greatest extent (from 86 to 87%), and in the least one – trunks and aboveground (from 71 to 74%). 

Since trees of different tree species have a specific configuration of the vertical profile, this 

specificity is now successfully recognized using airborne laser locators [36-38]. With multiple lidar 

registration of reflected laser pulses, the nature of the grouping of point clouds and its outline can be 

distinguished with 95% accuracy between pine, spruce and birch species. Pine differs from deciduous 

birch in the characteristic thickening of point clouds, and spruce differs from others in the shape of the 

crown [39-42]. At the current rate of development of laser and IT technology, it is possible that in the 

near future it will be possible to distinguish remotely even such visually similar species as spruce and 

fir. Lidar from a low-flying drone [16] will be able to distinguish spruce and fir by the opposite 

orientation of their cones, and ground-based lidar [43] will confirm this difference by the structure of 

the trunk bark (rough in spruce and smooth in fir). 

Ground-based laser scanning of a forest stand can produce a value of the crown length, which, at a 

given tree height, characterizes the change in tree biomass due to local growing conditions: tree vigour 

[44], stand density, competition and survival potential of trees within a forest [45]. We introduced the 

crown length into the model (2) as an additional independent variable. It turned out that with the same 

size of the width of the crown and the height of the tree, an increase in the length of the crown has a 

positive effect on the biomass of all components. But this effect is statistically significant for the 

biomass of needles, branches, rootsand aboveground (t = 3.2÷16.5> t05=1.96), and not significant for 

the biomass of the trunk (t = 1.3< t05=1.96). The inclusion of the crown length in the model either does 

not increase the adequacy of the model or increases it by an insignificant amount - from 0.6 to 2.0 %. 

4. Conclusions 

Thus, an allometric model has been developed that describes the positive relationship of the biomass 

of all components of Picea trees with the crown width and tree height at the level of p< 0.001, which 

makes it possible to evaluate all components of the biomass by remote sensing methods with a high 

degree of accuracy. 

The introduction of temperature and precipitation as additional independent variables into the 

allometric model showed that the biomass of equal-sized trees is described by a 3D picture. In cold 

regions, when precipitation increases, the biomass decreases, but as it moves to warm regions, it is 

characterized by an opposite or neutral trend. As the temperature increases in humid regions, the 

biomass increases, but as the transition to dry conditions begins to decrease. The discrepancy between 

the results obtained and previously published data for other species may be due to the biological 

characteristics of tree species and the distribution of photosynthetic products of a tree in its various 

components. 
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It was found that climate variables explain the variability of trunk and aboveground biomass to the 

greatest extent, and needles and branches to the least extent, and morphometric variables – on the 

contrary, respectively. 

The results obtained can be useful in monitoring forest biomass based on laser sensing. 
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