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The aim of current study was to develop a generic pseudo-allometric model of the biomass structure of larch
(Larix spp.) trees growing in Eurasia, and to assess the impacts of temperature and precipitation. It was assumed
that this model will create a prerequisite for predicting changes in the structure of the tree biomass of the genus
Larix spp. under the influence of current climate shifts. According to the Trans-Eurasian hydrothermal gradients
of Eurasia harvest biomass databasewas compiled from510 sample trees. The data adequacywas determined by
the level of variability and it accounted for 87–99% variability as the proposed by regressionmodels. It was found
that the increase in temperature by 1 °C at the constant level of precipitation causes decrease in the aboveground,
stem, foliage and branches of equal-sized and equal-aged larch trees. The increase of precipitation by 100mm at
the constant level of temperature causes decrease in the aboveground and stem biomass and increase of foliage
and branches.

© 2020 Ecological Society of China. Published by Elsevier B.V. All rights reserved.
1. Introduction

International efforts are needed to prevent the rise in mean annual
temperature and CO2 emissions. Increased CO2 emissionsmay bemain-
tained while increasing vegetation biomass bymeans of effective forest
management. Vegetation biomass and effective forest management
help to reduce high mean annual temperature [1]. To estimate the bio-
mass and carbon pools in the forested areas, allometric equations at a
tree and stand levels are developed based on the harvest data obtained
on the sample plots. It has been suggested that biomass of single forest
type can be predicted while following traditional forest measurement
indices [2].

Multivariate regression models have been implemented to assess
biomass and net primary production of major forest structuring tree
species of Eurasia [3–8]. Multivariate regression models are character-
ized by accuracy and reproducibility, however, these models fail to gen-
eralize on new samples or study areas [9,10]. It is relative important
to evaluate the biomass of plant communities in different forest stands
in other areas including mixed forests having different species
Shakoor).

by Elsevier B.V. All rights reserved.
composition. When using multivariate regression models to assess bio-
mass and productivity in forest stand, there is possibility of biases, and
the magnitude of these biases is unknown. A comparative analysis of
the accuracy of different methods for determining biological productiv-
ity of some tree species showed that allometric models performed bet-
ter at a tree level, and yielded smaller error in the assessment of biomass
per area unit compared to models performed at a stand level [11].

It is known that the stem diameter at breast height (DBH) is a main
predictor that explains the variation in tree biomass.DBH ~ tree biomass
relation is the most common, as illustrated by the allometric function.
Allometry demonstrates how functions are correlated with tree
architecture. Allometric relationships are important component of veg-
etation models and help to scale processes from individuals to globe
level. Optimization theory may pave the way for development of
allometric relationship; however allometry does not explain empirical
observation [12,13]. Biomass models work best when tree heights are
included in models along with DBH, while incorporating Cobb-
Douglas model [14–20]. Its log-log transformation is following

lnPi ¼ aþ b ln DBHð Þ þ c lnH ð1Þ
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Table 1
Distribution of the 420 larch sample trees by eco regions, tree species and mensuration indices.

Regions Species of the genus Larix spp.a Ranges Data number

Ages, yrs Diameters, cm Heights, m

West Europa L. decidua Mill. 34÷210 7.1÷47.8 9.8÷34.0 19
European Russia L. sukaczewii N.Dyl. 10÷70 1.0÷35.0 2.3÷28.0 25
Turgay deflection L. sukaczewii N.Dyl. 26÷42 6.2÷28.0 7.9÷17.8 28
North of West Siberia L. sibirica L.

L. gmelinii Rupr.
10÷70 2.1÷38.0 2.9÷24.8 116

North of Eastern Siberia L. cajanderi Mayr. 44÷400 0.3÷22.7 1.4÷14.8 66
North of Russian Far East L. cajanderi Mayr.

L. gmelinii Rupr.
30÷424 3.9÷52.8 2.9÷30.0 43

Mongolia. China L. sibirica L.
L. gmelinii Rupr.

14÷186 0.5÷31.0 1.5÷24.3 50

Japan L. leptolepis Gord. 9÷56 4.0÷35.9 4.3÷26.7 73

a Larix sukaczewiiN.Dyl. is a synonym of L. sibirica Ledebour; L. cajanderiMayr. is a synonym of L. gmelinii (Rupr.) Kuzen.; and L. sibirica Ledebour= L. deciduaMill. ssp. sibirica (Ledeb.)
Domin.
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Where, Pi is dry biomass of i-th component, kg; DBH and H are re-
spectively the stem diameter at the breast height (cm) and the tree
height (m).

Trees of the same diameter and height, have different ages, therefore
variation occurs in biomass, especially in crown biomass [21]. Hence, it
is necessary to include tree age alongwith DBH andheight in themodel,
as tree age determines the structure of tree biomass [22–28]. After in-
cluding tree age in allometric model, tree biomass takes following form.

lnPi ¼ aþ b lnAþ c ln DBHð Þ þ d lnH ð2Þ

In Eq. (2), the tree age is an ontogenetic factor, and H is the tree
height. DBH at the same age mediates the coenotic factor, and the tree
height at the same age and DBH is an indirect edaphic factor. Along
with the three main mass-forming variables - tree age (А), diameter at
breast height (DBH) and height (H) of a tree, the product of variables
(lnDBH), (lnH) was introduced into Eq. (2) as an additional predictor,
due to the fact that as a tree height decreases, the height of themeasure-
ment of aDBH shifts to the stem apex, and the allometry is violated [29].
So, we propose to call this modified allometry as pseudo-allometry hav-
ing the form.
Fig. 1.Distribution of biomass harvest data of 420 larch sample trees on themap of themean. Jan
cache/data/map_2014/currents-and-temperature-jan- enlarge-900 × 700.jpg).
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lnPi ¼ aþ b lnAþ c ln DBHð Þ þ d lnH þ e lnDBHð Þ lnHð Þ ð3Þ

Since the Eq. (3) includes the main mass-forming independent var-
iables, it can be considered as a generic one. But this assumption is ac-
ceptable for the total aboveground biomass only [30–32], but not for
biomass component equations [33].

If we calculate Eq. (3) as a generic, using all available harvest data for
Eurasia, and then applying it at different local levels, wewill have biases
of estimates. These biases are most likely due to natural zoning medi-
ated by temperature and precipitation [34,35]. By introducing tempera-
ture and precipitation indices as additional independent variables into
Eq. (3), we obtained the model sensitive to climate variables. Such sen-
sitivemodel has been reported previously [36]. The aim of current study
was to develop a generic pseudo-allometric model of the structure of
the biomass of larch (Larix spp.), single-trees species growing in Eurasia.
Second aim was to assess the impacts of temperature and precipitation
on the structure of biomass. According to our knowledge there is no lit-
erature available on the biomass structure of a single tree of a given tree
species in the Trans-Eurasian along the temperature and precipitation
gradients. We hypothesized that temperature and precipitation will af-
fect tree biomass. Particularly, we were interested to check the impacts
uary temperature, °C (WorldWeatherMaps, 2007;https://store.mapsofworld.com/image/

https://store.mapsofworld.com/image/cache/data/map_2014/currents-and-temperature-jan-
https://store.mapsofworld.com/image/cache/data/map_2014/currents-and-temperature-jan-


Fig. 2. Distribution of biomass harvest data of 420 larch sample trees on the map of the mean annual precipitation, mm (World Weather Maps, 2007).
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of temperature by 1 °C at the constant level of precipitation. Does tem-
perature decrease biomass of equal aged larch tree?
2. Materials and methods

Among 520 sample trees biomass database including dendrometric
parameter, 420 trees were selected for the analysis. We excluded 100
trees due to the lack of height measurements data. The biomass data
distribution by regions and measurement indices are presented
(Table 1). Tree biomass estimation was carried out in sampling plots.
Sampling plots position was relative to the isoclines (contour lines) of
the mean January temperature (Fig. 1), and mean annual precipitation
(Fig. 2). Harvest data matrix was generated including this climatic indi-
ces, as well as biomass component values andmensuration tree param-
eters. These component values and mensuration tree parameters were
included in the regression analysis procedure. As indicated Fig. 1,
mean January temperature in the northern part of Eurasia has negative
values, therefore the corresponding independent variable wasmodified
to the form (T+50), whichwas subjected to logarithmic procedure. As
climate warming is more pronounced in arctic region during the half of
Table 2
Characteristics of Eq. (1).

Biomass component Regression coefficients of the model

Pa 0.486 А−0.0529 D 1.5013 H 0.2183

Ps 0.165 А 0.0515 D 1.3387 H 0.7278

Pf 2.995 А −0.6569 D 2.1318 H−1.6092

Pb 2.077 А −0.5251 D 2.2978 H−1.7649

a The abbreviation adjR2 is a coefficient of determination adjusted for the number of param
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the year [37,38], therefore schematic map of the isoclines of mean Jan-
uary temperature, rather than the mean annual temperature was
used. This corresponds to the well-known fact that the temperature in
the arctic rises more rapidly than in the rest of the earth territory [39].
We used following structure of the regression model:

lnPi ¼ a0i þ a1i lnAð Þ þ a2i lnDBHð Þ þ a3i lnHð Þ þ a4i lnDBHð Þ lnHð Þ
þ a5i ln T þ 50ð Þ½ � þ a6i lnPRð Þ ð4Þ

where Pi is biomass of ith component, kg; i is the index of biomass com-
ponent: stemover bark (Ps), foliage (Pf), branches (Pb) and aboveground
(Pa); Т is mean January temperature, °С; РR is mean annual precipita-
tion, mm. All the necessary calculationswere carried out in statgraphics
software (http://www.statsgraphics.com).

Given the complexity of measuring the age and height of trees in
comparison with DBH, it is recommended to use specially designed
equations [4]. Therefore, Eqs. (5) and (6) are calculated to estimate
the value of A by the known values of the DBH, and to estimate the
value of H by the known values of A and DBH.
adjR2a SEa

D 0.1921(lnH) (T + 50)−0.1624 PR −0.0535 0.989 1.21
D 0.1527(lnH) (T + 50)−0.0897 PR −0.1145 0.990 1.21
D 0.2932(lnH) (T + 50)−0.6478 PR 0.1318 0.874 1.68
D 0.3454(lnH) (T + 50)−0.5901 PR 0.2201 0.907 1.67

eters; SE – equation standard error.

http://www.statsgraphics.com


Fig. 3.Dependence of larch tree biomass upon the Januarymean temperature (Т) and precipitation (РR). Designations: Pa, Ps, Pf, and Pb are correspondingly biomass: aboveground, stems,
foliage, and branches, in kg.
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A ¼ exp: 4:4904þ 0:6404 lnDð Þ−1:6043 ln T þ 50ð Þ½ � þ 0:5431 lnPRð Þf g;
adjR2 ¼ 0:621; SE ¼ 1:70

ð5Þ

H ¼ exp: 0:0648þ 0:0597 lnAð Þ þ 0:6372 lnDð Þ þ 0:2493 ln T þ 50ð Þ½ �f

−0:0467 lnPRð Þg; adjR2 ¼ 0:895; SE ¼ 1:21 ð6Þ

3. Results

Eq. (4) was obtained by the trivial regression analysis, while follow-
ing logarithmic transformation as suggested by [40]. Log and anti-log
transforming are presented (Table 2). Regression coefficients of
Eqs. (4), (6) are characterized by the significance level of 0.05 and the
resulting equations are adequate to predict or explain available
database.

Since the tabulation of Eq. (4) using the given values A, DBH, H, T and
PR results in lengthy table, therefore figures of the tree biomass depen-
dence upon temperature T and precipitation PR were constructed as a
fragment of 3D-graphs for trees. We showed tree biomass dependence
on temperature (T) and precipitation (PR). Trees age (100 years) were
plotted along with diameter D (24 cm) and stem (22 m) (Fig. 3). All
thermal zonal belts (in the range of T from−40°C to 0°C) with increas-
ing precipitation, the aboveground biomass and stem mass decreases,
but the mass of tree foliage and branches increases. Regardless of
the level of precipitation during the transition from warm zones
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(T = 0°C) to cold ones (T =−40°C) all the biomass components in-
crease (Fig. 3).

Increase in temperature by 1°C in different eco regions altered tree
biomass (Δ, %), and eco regions had different values of temperature
and precipitation (Fig. 4). We observed general pattern of decrease of
all the biomass components of trees with an increase in temperature
by 1°C in all temperature zones of Eurasia and in all regions that differ
in precipitation (Fig. 4). Tree biomass (Δ, %) changed with increasing
precipitation and temperature. Different values of temperature and pre-
cipitationwere recorded (Fig. 5). The commonpattern of reduced above
ground and stem biomass were reported, whereas needle biomass and
branches had positive correlation with annual precipitation (Fig. 5).
These trends mentioned are most strongly expressed in dry areas
(PR =200 mm) than in enough wet ones (PR = 900 mm).

4. Discussions

We showed that biomass is associatedwith the ratio of these two cli-
matic variables i.e. temperature and precipitations. Current study re-
vealed temperature and precipitation are important factors for
allocation of biomass in different parts of trees. Our results partially con-
firm the previously published data [36], on the change in the above-
ground biomass of larch trees with the increase in temperature by 1°C
and with the increase in precipitation by 100 mm.

According to our results, there is a decrease in the aboveground bio-
mass with an increase in both temperature and precipitation. It is ratio-
nal to find such results, aswe have found that in Russia the temperature
rising by 1°C decrease in the tree aboveground biomass by 0.4%, and an



Fig. 4. Change of tree biomass (surface 1) when winter temperature increasing by 1°C due to the expected climate change at different territorial levels of temperature and precipitation.
SymbolsΔa,Δs,Δf andΔb on the ordinate axesmean the change (±%) of biomass of aboveground, stems, foliage and branches, respectively, with the temperature increase by 1°C and at
the constant precipitation.

Fig. 5. Change of tree biomass (surface 1)when precipitation increasing by 100mmdue to the expected climate change at different territorial levels of temperature and precipitation. The
symbolsΔa,Δs,Δf andΔb along the ordinate axes represent the change (±%) of aboveground, stems, needles and branches biomass, respectively, with precipitation increase by 100mm
and at the constant mean temperatures of January and at the constant precipitation.
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increase in precipitation by 100 mm causes its decrease by 1.2%. Thus,
the aboveground biomass of larch in the boreal forests of Russia reacts
negatively to the temperature increase.

Several studies have found variable results. For example, it was re-
vealed that no statistically significant effect of temperature and precip-
itation on the tree biomass of the most components, owing to a small
range of temperature and precipitation variations groups' species in-
cludingmany variables and use ofmeta-data instead of harvest biomass
indices [41]. Scientific literature shows that temperature is themain de-
termining factor which explains allocation of tree biomass and has re-
vealed positive and negative impact on plant growth, for instance,
[42], showed that root total biomass increased, where as in contrast to
root total biomass, foliage biomass decreased.

Allometricmodel studies of aboveground biomass of trees ofMasson
pine in southern China showed that high mean temperature reduced
aboveground biomass, whereas precipitation had antagonistic effect
[43]. A similar differentiated response of biomass and net primary pro-
duction to temperature and precipitation was shown earlier on the ex-
ample of stands of two-needled pines in Eurasia [44].

5. Conclusions

The intensity of biomass trend in relation to the temperature of pre-
cipitation was studied. We showed that the increase in winter temper-
ature by 1°C at the constant level of precipitation causes decrease in the
aboveground, stem, foliage and branches of equal-sized and equal-aged
larch trees. The increase of precipitation by 100mmat the constant level
of winter temperature causes decrease in the aboveground and stem
biomass and increase of foliage and branches. The development of
such models for the main forest-forming species of Eurasia will make
it possible to predict changes in the productivity of the forest cover of
Eurasia in relation to climate change.
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