Большие данные – Прогнозирование – часть 2

Мультипликативное экспоненциальное сглаживание Холта -Винтерса

Мультипликативное экспоненциальное сглаживание Холта - Винтерса является логическим продолжением сглаживания Холта с корректировкой тренда. Оно учитывает уровень, тренд и необходимость подгонки спроса вверх или вниз на регулярной основе «в угоду» сезонным флуктуациям. Сезонные колебания не обязательно имеют годовой цикл, как в нашем примере. В случае MailChimp мы имеем периодические колебания спроса каждый четверг (похоже, четверг считается отличным днем для отправки маркетинговых писем). С помощью Холта - Винтерса мы можем учесть этот недельный цикл.

В большинстве случаев вы не можете просто взять и прибавить или отнять от спроса какую-либо фиксированную сезонную величину ради подгонки прогноза. Если ваш бизнес растет от продаж в 200 мечей до 2000 каждый месяц, добавление 20 штук в модель в качестве подгонки под декабрьский всплеск спроса - не очень хорошая идея. Нет, сезонные изменения обычно должны быть результатом умножения. Вместо прибавления 20 мечей, возможно, стоило бы *умножить* прогноз на 120 %. Вот почему метод называется мультипликативным (от multiplicate - умножать). Вот как этот прогноз представляет себе спрос:

Спрос в момент t = (уровень + t x тренд) * сезонная поправка для момента t * все оставшиеся нерегулярные поправки, которые мы не можем учесть

Таким образом, теперь у вас есть структура тренда и уровня, идентичная той, что была в холтовском сглаживании с корректировкой тренда. А поскольку мы не в силах учесть нерегулярные колебания спроса, такие как божья воля, то не станем и пытаться.

Сглаживание Холта - Винтерса также называют *тройным экспоненциальным сглаживанием*, потому что, как вы, наверно, сами догадались, у него три сглаживающих параметра. Здесь, кроме, знакомых нам *альфы* и *гаммы*, также присутствует сезонный фактор с обновленным уравнением. Он называется *дельта*.

Три уравнения корректировки погрешности немного сложнее, чем то, с чем вы ранее имели дело, но есть и много общего.

Перед тем, как начать, я хочу прояснить одну вещь. Вы использовали уровни и тренды предыдущего периода, чтобы предсказать и скорректировать следующий, - но при сезонных корректировках можно на него и не оглядываться. Нас больше интересует приближение фактора корректировки для конкретной точки цикла. В нашем случае это на 12 периодов раньше.

Это значит, что если сейчас месяц 36 и вы прогнозируете на 3 следующих месяца, до 39, то прогноз будет выглядеть так:

Прогноз на месяц 39 = (уровень36 + 3 х тренд36) * сезонность27

Да-да, все верно, там написано *сезонность*²⁷. Это самое последнее приближение сезонной корректировки для марта. Нельзя использовать *сезонность*³⁶, потому что это - декабрь.

Покопаемся в обновлениях уравнений, начиная с этого уровня. Теоретически вам нужен только исходный *уровень*0 и *тренд*0, но на самом деле потребуется *двенадцать* исходных сезонных факторов, от *сезонности-*11 до *сезонности0*.

К примеру, обновленное уравнение для *уровня* основано на исходном сезонном приближении для января:

> уровень1 = уровеньо + трендо + альфа * (спрос1 - (уровеньо + трендо) * сезонность - 11) /сезонность - 11

В этом расчете уровня многие компоненты вам знакомы. Текущий уровень — это предыдущий уровень плюс предыдущий тренд (точно так же, как и в двойном экспоненциальном сглаживании) плюс *альфа*, умноженная на одношаговую погрешность (*cnpoc1 - (уровень* о + *mpeнд* о) * *сезонность - 11*), где погрешность получает сезонную корректировку, будучи разделенной на *сезонность ь-11*.

Таким образом мы продвигаемся вперед во времени, и следующий месяц будет выглядеть так:

уровень2 = уровень1 + тренд1 + альфа * (спрос2 - (уровень1 + тренд1) * сезонность - 10)/сезонность - 10

Общий уровень будет иметь такую формулу для расчета:

Уровень текущий период = уровеньпредыдущий период + Тренд предыдущий период + альфа * (спрос текущий период - (уровень предыдущий период + тренд предыдущий период) * сезонность последний релевантный период) / сезонность последний релевантный период

Тренд обновляется соответственно уровню в точности так же, как и при двойном экспоненциальном сглаживании:

Тренд текущий период = тренд предыдущий период + гамма + альфа * (спростекущий период - (уровень предыдущий период + тренд предыдущий период) * сезонность последний релевантный период) / сезонность последний релевантный период

Как и при двойном экспоненциальном сглаживании, текущий тренд — это предыдущий тренд плюс *гамма*, умноженная на погрешности, включенные в уравнение обновления уровня.

А теперь - уравнение обновления сезонного фактора. Оно не похоже на уравнение обновления тренда, разве что корректирует последний релевантный сезонный фактор с помощью *дельты*, умноженной на погрешность, которую обновления уровня и тренда *игнорировали*:

Сезонность текущий период = сезонность последний релевантный период + дельта * (1 - альфа) * (спростекущий период - (уровеньпредыдущий период + тренд предыдущий период) * сезонность последний релевантный период) / (уровень предыдущий период + тренд предыдущий период)

В этом случае вы не только обновляете корректировку сезонности соответствующим фактором за 12 предшествующих месяцев, но также и вкладываете в нее *дельту*, умноженную на все неучтенные погрешности, валяющиеся обрезками на полу мастерской после обновления уровня. Обратите внимание: вместо того, чтобы сезонно корректировать погрешность, вы делите на значения предыдущего уровня и тренда. С помощью «корректировки уровня и тренда» одношаговой погрешности вы помещаете погрешность в ту же шкалу множителей, что и сезонные факторы.

Установка исходных значений уровня, тренда и сезонности

Установка исходных значений для ПЭС и двойного экспоненциального сглаживания происходила проще простого. Но теперь вам нужно выяснить, что в серии данных является трендом, а что - сезонностью. Установка исходных значений для этого прогноза (одного уровня, одного тренда и 12 сезонных корректирующих факторов) в этот раз немного труднее. Существуют простые (и неверные!) способы провести ее. Я покажу вам правильный метод инициализации Холта - Винтерса, при том что ваши исторические данные имеют как

минимум объем в два сезонных цикла. В нашем случае есть объем данных в три цикла. Вот что нужно сделать:

• Сгладить исторические данные методом скользящего среднего 2 х 12.

• Сравнить сглаженную версию временного ряда данных с оригиналом, чтобы получить приблизительную оценку сезонности.

• С помощью исходных приближений сезонности десезонировать исторические данные.

• Найти приближения уровня и тренда с помощью линии тренда десезонированных данных.

Для начала создайте новый лист и назовите его HoltWintersInitial. Затем вставьте в первые два столбца временную серию данных. Теперь нужно сгладить некоторые из этих данных с помощью скользящего среднего. Так как сезонность рассчитывается у нас в 12-месячных циклах, имеет смысл использовать среднее за 12 месяцев.

Что значит скользящее среднее за 12 месяцев?

Для расчета вы берете спрос за конкретный месяц и спрос за периоды до и после, и вычисляете среднее значение. Так утрамбовываются все странные всплески в серии.

Но со скользящим средним за 12 месяцев есть проблема. 12 - четное число. Если вы сглаживаете спрос за месяц 7, стоит ли считать его средним спросом с 1-го по 12-й месяц или со 2-го по 13-й? Иначе говоря, месяц 7 не совсем в середине. Середины нет!

Чтобы справиться с этим затруднением, нужно сгладить спрос с помощью «скользящего среднего 2 x 12», что является средним значением обоих вариантов - месяцев *с* 1 *no* 12 и *со* 2 *no* 13. (То же самое относится к любому четному числу временных периодов цикла. Если в вашем цикле нечетное количество периодов, часть «2х» скользящего среднего вам не нужна и вы можете вычислить простое скользящее среднее.)

А теперь обратите внимание: для первых шести месяцев данных и для шести последних такие вычисления вообще не представляются возможными. У вас нет данных за 6 месяцев ни с какой стороны. Все, что вы можете — это сгладить месяцы из середины последовательности данных (в нашем случае месяцы 7-30). Именно поэтому вам нужна последовательность данных длиной как минимум два года - чтобы в итоге сглаживать данные за год.

Таким образом, можно использовать эту формулу начиная с месяца 7:

= (AVERAGE (B3:B14) + AVERAGE (B2:B13)) /2

= (CP3HA4 (B3:B14) + CP3HA4 (B2:B13)) /2

Это среднее значение месяца 7 с 12 месяцами до и после него, за исключением того, что месяцы 1 и 13 учитываются как половина остальных месяцев. Такой учет имеет определенный смысл: так как эти месяцы, 1 и 13, приходятся на один и тот же календарный месяц, то, если бы мы считали каждый из них как один, в вашем среднем оказалось бы слишком много данных за январь.

Растягивая эту формулу вниз до месяца 30 и помещая на простую линейную диаграмму и сглаженные данные, и оригинал, вы получаете лист, изображенный на рис. 29. На своей диаграмме я назвал их сглаженными (smoothed) и несглаженными (unsmoothed). После взгляда на сглаженную линию становится очевидным, что любые сезонные изменения, имеющиеся в данных, сглажены.

Теперь в столбце D разделите оригинальную величину на сглаженную и получите приблизительное значение сезонной поправки.

B8/C8

Полученную комбинацию растяните вниз до месяца 30. Обратите внимание на всплески в 20 % выше нормального спроса в месяцах 12 и 24 (декабрь), в то время как весной наблюдаются провалы.

Рис. 29. Сглаженные данные спроса

Эта техника сглаживания дала вам две (для каждого фактора сезонности) точечные оценки. Давайте узнаем среднее значение этих двух факторов в столбце Е, что будет исходным сезонным фактором для Холта - Винтерса.

Например, в Е2, где находятся данные за январь, нужно взять среднее от двух значений спроса за январь из столбца D, ячеек D8 и D26. Так как сглаженные данные в столбце D

начинаются от середины года, то растянуть формулу среднего нельзя. В Е8, где находятся данные за июль, нужно брать среднее от D8 и D20, к примеру.

Когда все эти 12 корректировок будут у вас в столбце Е, можно вычесть единицу из каждого из них в столбце F и отформатировать ячейки в проценты (выделить их и правым целчком мыши вызвать меню, в котором выбрать «Формат ячеек»), чтобы увидеть, как эти факторы двигают спрос вверх или вниз каждый месяц. Вы можете даже вставить столбчатую диаграмму этих значений в таблицу, как показано на рис.30.

A Hor	me Layout	Tables	Charts	SmartArt Form	ulas Data	Review	Developer	~
D	31 (‡	00.	fx =831/0	31				
21	A	B	C	3	dimension.	E	F	1
t	Dema	and St	moothed S	Seasonal Factor Estima	te Initial Seas	ional Factors	% Skew	
	1	165				0.99		-1%
	2	171				1.04		4%
	3	147				0.93		-1%
	4	143				0.91		-976
	5	164				1.04		472
	6	1601	462 47		0.2	0.91		-976
	/	152	103 17	0.	93	0.92		-579
	0	1501	10313	0.	92	0.93		-7%
	9	1591	164.22	0.	97	0.99		-179
	10	1691	165 50	1	03	1.02		270
	11	1/3	166 54	1	05	1.05		579
	12	160	167.00	1	4.4	1.20		2078
	13	105	16821	1	00			
	14	1621	170 08	0.	99		A/ 61-	
	16	1471	171.96	0.	93		% Skew	
	47	4001	173.88	0.	83			
	18	161	17608	0	25%	1		
	19	1621	178 00	0	01	1		
	20	169	181.00	0	20%			
	21	185	184 13	1	00			
	22	188	187.25	1	00 15%			
	22	200	190 33	1	05	-		
5	24	229	192 58	1	19 1094			
5	25	189	195 96	0	96			
P	26	218	199 63	1	09 50/			
5	27	185	20254	Ő.	91 575	- 10		
£ .	28	199	205 08	0	97		1 B C C C	
0	29	210	209.00	1	00 0%	100 100		Contraction of the local sectors of the local secto
1	30	193	214.79	0.	901	1 2 3	4567	8 9 10 11 12
2	31	211		and the second se	-5%			
\$	32	208						-
4	33	216			-10%	1	-	
2	34	218						
b	35	264			-15%	1		
1	36	304						

s

Рис. 30. Столбчатая диаграмма приблизительных сезонных

Теперь, когда у вас есть эти исходные сезонные корректировки, можно использовать их для *десезонализации* временной последовательности данных. Когда вся серия будет десезо- нализирована, можно провести через нее линию тренда, а затем использовать уклон и свободный член в качестве начального отрезка и тренда.

Для начала вставьте соответствующие значения сезонных корректировок за каждый месяц от G2 до G37. Фактически вы вставляете E2:E13 три раза подряд в столбец G (убедитесь, что вы вставляете только значения). В столбце H разделите исходную серию данных из столбца B на сезонные факторы из столбца G, чтобы удалить приблизительный сезонный фактор из данных. Эта таблица показана на рис. 31.

Теперь, как и на предыдущих листах, вам нужно вставить диаграмму столбца H и провести на ней линию тренда. Отобразив уравнение этой линии на графике, вы получите исходное приближение тренда, равное 2,29 дополнительных проданных мечей в месяц, и исходное приближение уровня, равное 144,42 (рис. 32).

	Home to	mout Tabl	er Chart	ConsetAct	Formulas	Data	Review Dave	loner w
SI	UMPRODUCT	: 0 0	fx = B2/	G2	Formulas	Data	Review Devi	noper
	A	B	C	D	E	F	G	н
1	t	Demand	Smoothed	Seasonal Factor Estimate	Initial Seasonal	% Skew	Initial Seasonal Factors x3	Deseasonalized Data
2	1	165	1	A COLORINA IN COLORINA	0.99	-1%	0.99	=B2/G2
3	2	171	100		1.04	4%	1.04	164.51
4	3	147	6		0.93	-7%	0.93	157.57
5	4	143	10		0.91	-9%	0.91	156.70
b	5	164			1.04	4%	1.04	157.24
1	6	160	2000		0.91	-9%	0.91	176.51
8	7	152	163.17	0.93	0.92	-8%	0.92	165.07
9	8	150	163.13	0.92	0.93	-7%	0.93	161.88
10	9	159	163.54	0.97	0.99	-1%	0.99	160.85
11	10	169	164.33	1.03	1.02	2%	1.02	166.31
12	11	173	165.50	1.05	1.05	5%	1.05	165.07
15	12	203	166.54	1.22	1.20	20%	1.20	168.60
4	13	169	167.00	1.01			0.99	171.01
13	14	166	168.21	0.99			1.04	159.70
10	15	162	170.08	0.95			0.93	173.65
1	16	147	171.96	0.85			0.91	161.08
01	17	188	173.88	1.08		_	1.04	180.25
19	18	161	176.08	0.91			0.91	177.62
20	19	162	178.00	0.91		-	0.92	175.93
	20	169	181.00	0.93			0.93	182.38
1	21	185	184.13	1.00	1		0.99	187.15
10	22	188	187.25	1.00			1.02	185.00
1	23	200	190.33	1.05			1.05	190.83
22	24	229	192.58	1.19			1.20	190.20
2	25	189	195.96	0.96		-	0.99	191.25
H	20	218	199.03	1.09			1.04	109.72
14	2/	185	202.54	0.91			0.93	218.00
su	20	210	203.08	1.00			1.04	218.00
11	29	102	214 70	0.00		-	0.01	201.34
52	30	211	214.75	0.90		-	0.91	220 14
55	32	209	5		1		0.92	224.47
\$4	32	216	10.0				0.93	218 51
\$5	34	210	1		-		1.02	214.51
56	35	264	1		-		1.02	251.90
\$7	36	304	1			-	1.00	252.49

Рис. 31. Десезонированная серия данных

Рис. 32. Исходные приближения уровня и тренда относительно линии тренда в десезонированной серии

Приступим к прогнозу

Теперь, когда у вас есть исходные значения всех параметров, настало время создать новый лист под названием HoltWintersSeasonal, в строку 4 которого для начала нужно вставить серию данных, точно так же, как и в двух рассмотренных выше методах прогнозирования.

В столбцах С, D и E рядом с этой серией расположатся уровень, тренд и сезонные значения соответственно. Но на этот раз, в отличие от двух предыдущих, где нам нужно было вставить только одну пустую строку 5, мы вставляем пустые строки с 5 по 16 и нумеруем их по месяцам относительно текущего - от -11 до 0 в столбце А. Затем исходные значения из предыдущего листа можно вставить в соответствующие ячейки, как показано на рис. 33.

	Home	Tal	blas C	harte	11 4	14.
	J27	:00	fx fx	narts		1.
2	A	В	С	D	E	1
1	Total months					
2	36					T
2		A			Conservation	
4	t	Demand	Level	Trend	Adjustment	
5	-11				0.9882334	
6	-10				1.03945951	1
7	-9				0.93293329	1
8	-8				0.91259776	1
9	-7				1.0430106	
10	-6				0.90644245	
11	-5				0.92083759	1
12	-4				0.92662094	1
13	-3				0.98849075	
14	-2				1.01620145	1
15	-1				1.04805266	
16	0		144.42	2.2095	1.20400491	
17	1	165				
18	2	171				
19	3	147				
20.	1	1/13	and the second	. Contraction		J

Рис. 33. Все исходные значения Холта-Винтерса в одном месте

В столбце F вы делаете одношаговый прогноз. Для периода 1 он равен предыдущему уровню в C16, сложенному с предыдущим трендом в D16. Но они оба скорректированы соответствующими приближениями сезонности 12-ю строками выше в E5. Таким образом, в F17 записано следующее:

=(C16+D16)*E5

Погрешность прогноза в G17 может быть рассчитана как =B17-F17

Теперь вы готовы рассчитывать уровень, тренд и сезонность, шагая вперед. Таким образом в ячейках C2:E2 располагаются значения *альфа, гамма* и *дельта* (как обычно, я начну с 0,5). Эта таблица показана на рис. 34.

Первое, что вы будете рассчитывать, двигаясь вперед во времени, — это новое приближение уровня для текущего периода: для периода 1 в ячейке С17 расчет будет таким:

=C16+D16+C\$2*G17/E5

Как вы узнали из предыдущего раздела, новый уровень равен предыдущему, сложенному с предыдущим трендом и *альфой*, умноженным на десезонированную погрешность прогноза. Обновленный тренд в D17 рассчитывается практически так же:

=D16+D\$2*C\$2*G17/E5

Он, по сути, представляет собой предыдущий тренд плюс *гамма*, умноженные на величину десезонированной погрешности, встроенной в обновление уровня.

PLE		A DO	& @+	. S .	Q+ (Search in	Sheet	
•	Home Layou	t Tables	Charts Sma	rtArt Formul	las Data	Review)) V
	F17 \$	00 - fx	=(C16+D16)*E	5			
1	A	В	C	D	E	F	G
1	Total months		Level smoothing parameter (alpha)	Trend smoothing parameter (gamma)	Seasonal smoothing parameter (delta)		
2	36		0.5	0.5	0.5		
3					1		
4	t	Actual Demand	Level	Trend	Seasonal Adjustment	One-step Forecast	Forecast Error
5	-11				0.9882334		
6	-10				1.03945951		
7	-9				0.93293329		
8	-8				0.91259776		
9	-7				1.0430106		
10	-6				0.90644245		
11	-5				0.92083759		
12	-4				0.92662094		
13	-3				0.98849075		
14	-2				1.01620145		
15	-1				1.04805266		
16	0		144.42	2.2095	1.20400491		
10	1	165				144.9042	20.0958
10	2	1/1					
20	3	147					
	14.4.5.51	HoltWintersSease	onal +				

Рис. 34. Рабочий лист со сглаживающими параметрами и первым одношаговым прогнозом с погрешностью

Обновленный сезонный фактор для января будет выглядеть следующим образом: =E5+E\$2*(1-C\$2)*G17/(C16+D16)

Это фактор предыдущего января, скорректированный *дельтой*, умноженный на погрешность, проигнорированную при коррекции уровня, нормированный

Обновленный сезонный фактор для января будет выглядеть подобно сезонным факторам - с помощью последовательного деления на предыдущий уровень и тренд.

Обратите внимание, что все три формулы - *альфа, гамма* и *дельта* - имеют абсолютные ссылки, так что при перемещении расчета ничего не изменится. Растягивая C17:G17 вниз до месяца 36, получаем таблицу, изображенную на рис. 35.

Теперь, когда у вас есть итоговый уровень, тренд и сезонные приближения, вы можете спрогнозировать спрос на следующий год. Начиная с месяца 37 в ячейке В53 получаем:

			S 123)	- 2 -	Q- Search in S	neel	_	12
٨	Home Layout	t Tables	Charts Sma	rtArt Formul	as Data	Review	33 V	ŵ
_	E52 :	© © (= fx	=E40+E\$2*(1-0	C\$2)*G52/(C51+	DS1)	-		4
1	A	В	C	D	E	F	G	4
1	Total months		smoothing parameter (alpha)	smoothing parameter (gamma)	smoothing parameter (delta)			
2	36		0.5	0.5	0.5			
3								
4	t	Actual Demand	Level	Trend	Seasonal Adjustment	One-step Forecast	Forecast Error	
40	24	229	190.684064	1.51579481	1.20638287	233.1156	-4.1156	[]
41	25	189	188.831061	-0.1686042	1.01014428	195.8661	-6.8661	f
42	26	218	200.281424	5.64087967	1.06046465	194.0932	23.9068	
43	27	185	201.840563	3.60000903	0.92621147	192.6368	-7.6368	
44	28	199	215.021228	8.3903371	0.90667161	182.0228	16.9772	
45	29	210	211.354069	2.36158946	1.02527183	235.4101	-25.41	
46	30	193	211.469762	1.23864123	0.91760994	197.1435	-4.1435	
47	31	211	222.16188	5.96537953	0.93123693	193.7759	17.2241	
48	32	208	226.994721	5.3991103	0.91862962	210.0859	-2.0859	
49	33	216	225.858533	2.13146073	0.97100001	228.8725	-12.873	
50	34	218	221.570015	-1.0785282	0.99898038	231.01	-13.01	
51	35	264	235.798618	6.57503737	1.0878437	231.8137	32.1863	
52	36	304	247.183312	8.97986548	1.21835258	292.3954	11.6046	Π

=(C\$52+(A53-A\$52)*D\$52)*E41

Рис. 35. Уравнения обновлений до месяца 36

Как и в холтовском сглаживании с коррекцией тренда, берется последнее приближение уровня, к которому затем прибавляется тренд, умноженный на количество месяцев, прошедших с самого последнего приближения тренда. Единственная разница заключается в том, что весь прогноз нормируется по самому свежему сезонному множителю для января, который находится в ячейке E41. А так как в уровне C\$52 и тренде D\$52 использованы абсолютные ссылки и они не изменяются при растягивании прогноза вниз, сезонная ссылка в E41 должна двигаться вниз вместе с растягиванием прогноза на следующие 11 месяцев. Таким образом, растянув расчет вниз, вы получаете прогноз, показанный на рис. 36.

•	Home Layout	t Tables	Charts Sma	rtArt Formul	as Data	Review	>> ~ 4
SU	MPRODUCT :	$\odot \odot (= fx)$	=(C\$52+(A64-	A\$52)*D\$52)*E5	2		6
1	Total months		Level smoothing parameter (alpha)	Trend smoothing parameter (gamma)	Seasonal smoothing parameter (delta)		U
2	36		0.5	0.5	0.5		
3	t	Actual Demand	Level	Trend	Seasonal Adjustment	One-step Forecast	Forecast Error
50	34	218	221.570015	-1.0785282	0.99898038	231.01	-13.01
51	35	264	235.798618	6.57503737	1.0878437	231.8137	32.1863
52	36	304	247.183312	8.97986548	1.21835258	292.3954	11.6046
53	37	258.76					
54	38	281.17					
55	39	253.90					
56	40	256.68					
57	41	299.46					
58	42	276.26					
59	43	288.72					
60	44	293.06					
61	45	318.49					
62	46	330.64					
05	4/	370.35					

Рис. 36. Прогноз Холта-Винтерса на следующие месяцы

Можно создать график этого прогноза с помощью простой линейной диаграммы, как и в предыдущих двух методах рис. 37.

Рис. 37: График прогноза Холта-Винтерса

И наконец... оптимизация!

Пора установить параметры сглаживания. Как и в предыдущих двух техниках, поместите сумму квадратов отклонений в ячейку G2, а стандартное отклонение - в H2.

Операция отличается только тем, что параметров сглаживания три, поэтому стандартное отклонение рассчитывается как =SQRT (G2/(36-3)) =KOPEHb (G2/(36-3))

Так получается лист, изображенный на рис. 38.

Что касается настройки «Поиска решения» (показанного на рис.

39), в этот раз мы оптимизируем H2, варьируя три параметра сглаживания. Для вычисления стандартного отклонения подходит почти половина упомянутых техник. График прогноза (рис. 40) выглядит довольно симпатично, не правда ли? Вы следите за трендом и сезонными колебаниями.

	Home Layout	Tables	Charts Sma	rtArt Formul	as Data	Review Devi	eloper	~
	HZ ÷	R R	=SQRT(G2/(36-	-3))	F	F	C	
1	Total months		Level smoothing parameter (alpha)	Trend smoothing parameter (gamma)	Seasonal smoothing parameter (delta)		SSE	Standard Error
2	36		0.5	0.5	0.5		5212.59778	12.5681147
3								
4	t	Actual Demand	Level	Trend	Seasonal Adjustment	One-step Forecast	Forecast Error	Squared Error
5	-11				0.9882334			
6	-10				1.03945951			
7	-9				0.93293329			
8	-8				0.91259776			
9	-7				1.0430106			
	-6				0.90644245			
0					0.92083759			
0	-5							
1	-5 -4				0.92662094			
10 11 12 13	-5 -4 -3				0.92662094 0.98849075			
10 11 12 13	-5 -4 -3 -2				0.92662094 0.98849075 1.01620145			
10 12 13 14	-5 -4 -3 -2 -1				0.92662094 0.98849075 1.01620145 1.04805266			
10 12 13 14 15 16	-5 -4 -3 -2 -1 0		144.42	2.2095	0.92662094 0.98849075 1.01620145 1.04805266 1.20400491			
10 11 12 13 14 15 16	-5 -4 -3 -2 -1 0 1	165	144.42 156.797053	2.2095 7.29327646	0.92662094 0.98849075 1.01620145 1.04805266 1.20400491 1.02249634	144.904169	20.0958308	403.842415

Рис. 38. Добавление суммы квадратов отклонений и стандартного отклонения

0.0	Solver Paramet	ers	
Set Objective:	\$H\$2		
To: 🔿 Max 🤅	Min Value Of	0	
By Changing Variab	e Cells:		
SCS2:SES2			
Subject to the Cons	traints:		
\$C\$2:\$E\$2 <= 1			Add
			Change
			Delete
			Reset All
		- 1	Load/Save
Make Unconstra	ined Variables Non-M	Negative	
elect a Solving Met	hod: Evolutionary	•	Options
Solving Mathod			
Select the GRG Moni nonlinear. Select the and select the Evolu smooth.	near engine for Solver LP Simplex engine for tionary engine for Solve	Problems that a linear Solver Pr	re śrnooth oblems, t are nón-

Рис. 39. Настройка «Поиска решения® для Холта-Винтерса

Рис. 40. Оптимизированный прогноз по Холту-Винтерсу

Теперь в сделанном прогнозе нужно проверить **автокорреляции**. Они у вас уже настроены - так что просто скопируйте их и вставьте новые значения погрешностей.

Создайте копию листа Holt Autocorrelation и назовите ее HW Autocorrelation. Затем вставьте специальной вставкой значения из столбца с погрешностями G в столбец В листа автокорреляции. Так получается коррелограмма, изображенная на рис. 41.

Рис. 41. Коррелограмма модели Холта-Винтерса

Так как выше критической точки 0,33 нет автокорреляций, вы понимаете, что модель неплохо поработала над пониманием структуры значений спроса.

Создаем интервал прогнозирования вокруг прогноза

Итак, у нас есть вполне рабочий прогноз. Как установить верхние и нижние границы, которые можно использовать для построения реалистичных предположений вместе с начальником?

В этом вам поможет симуляция Монте-Карло. Смысл заключается в том, чтобы сгенерировать будущие сценарии поведения спроса и определить группу, в которую попадают 95 % из них. С чего же начать? На самом деле процесс довольно прост.

Создайте копию листа HoltWintersSeasonal и назовите ее PredictionIntervals. Удалите оттуда все графики - они вам не нужны - и более того, сотрите прогноз из ячеек B53:B64. Вы запишете туда «реальный» (но симулированный) спрос.

Как я и предупреждал в начале главы, прогноз всегда неверен. В нем всегда есть отклонения. Но вы знаете, как они распределяются. У вас реалистичный прогноз, который, как вы предполагаете, имеет среднее одношаговое отклонение, равное 0 (непредвзято) со стандартным распределением, равным 10,37, как рассчитано в предыдущей вкладке.

Можно сгенерировать симуляцию отклонения с помощью функции NORMINV/HOPMOEP. Для будущих месяцев вам достаточно снабдить ее средним (0), стандартным распределением (10,37 в ячейке H\$2) и случайным числом от 0 до 1, а она выдаст отклонение из колоколообразной кривой.

Теперь поместим симуляцию одношаговой погрешности в ячейку G53:

```
=NORMINV(RAND(),0,H$2)
=HOPMOEP(СЛЧИС(),0,H$2)
```

Растянув эту формулу вниз до G64, вы получите симуляции погрешностей для 12 меся-

цев одношагового прогноза. Так возникает лист, изображенный на рис. 42 (ваши значения симуляций будут отличаться от моих).

С погрешностью прогноза у вас есть все, что нужно для обновления приближений уровня, тренда и сезонности, которые следуют за одношаговым прогнозом. Так что выделите ячейки C52:F52 и растяните их до строки 64.

В результате у вас имеются симулированная погрешность прогноза и сам прогноз на шаг вперед. Вставив погрешность в столбец G а прогноз - в столбец F, можно фактически отказаться от симуляции спроса за этот период.

Таким образом, в В53 окажется просто:

=F53+G53

Растяните эту формулу до В64, чтобы получить величины спроса на все 12 месяцев (рис. 43).

Выполнив этот сценарий и обновив страницу, вы получаете новые значения спроса. Можно генерировать различные сценарии будущего спроса, просто копируя и вставляя один сценарий куда угодно, а затем наблюдая за меняющимися значениями.

Начните с называния ячейки A69 Simulated Demand, а ячеек A70:L70 - по месяцам, с 37 по 48. Это можно сделать простым копированием A53:A64 и специальной вставкой транспонированных значений в A70:L70.

Точно так же вставьте специальной вставкой транспонированные значения первого сценария спроса в A71:L71. Чтобы вставить второй сценарий, кликните правой клавишей мышки на строке 71 и выберите «Вставить» - так появится пустая строка 71. Теперь воспользуйтесь специальной вставкой и заполните ее другими симулированными значениями спроса (они должны были обновиться, когда вы вставляли предыдущую последовательность).

•	Home Layout	Tables	Charts Sena	rtArt Formul	as Data	Review Dev	eloper	~
2	G64 ;	B C - Jx	=NORMINV(RAM	D (0,0,H\$2)	F	F	C	н
1	Total months		Level smoothing parameter (alpha)	Trend smoothing parameter (gamma)	Seasonal smoothing parameter (delta)		SSE	Standard Error
2	36		0.30719534	0.22854493	0		3550.66489	10.3728446
3	t	Actual Demand	Level	Growth Rate	Seasonal Adjustment	One-step Forecast	Forecast Error	Squared Error
19	33	216	225.443778	3.53306794	0.98849075	225.886034	-9.8860337	97.7336631
0	34	218	224.53712	2.51839098	1.01620145	232.686604	-14.686604	215.696336
1	35	264	234.686314	4.26237232	1.04805266	237.966131	26.0338687	677.762319
2	36	304	243.108719	5.21312676	1.20400491	287.695391	16.3046092	265.840281
3	37						-14.046532	
4	38						-4.7917394	
5	39						1.77645454	
6	40						8.90077396	
7	41						10.6184145	
8	42						-2.5858345	
9	43						17.8924253	
0	44						-8.9456186	
1	45						-22.866944	
2	46						-7.4538358	
5	47						10.9658/22	

Рис. 42. Симулированные одношаговые погрешности

•	Home Layout	Tables	Charts Sma	rtArt Formul	as Data	Review Dev	eloper	~
	864 :	😳 🗇 (= fx	=F64+G64					
2	A	B	C	D	E	F	G	н
1	Total months		Level smoothing parameter (alpha)	Trend smoothing parameter (gamma)	Seasonal smoothing parameter (delta)		SSE	Standard Error
2	36		0.30719534	0.22854493	0		3550.66489	10.3728446
3	1 day - start							
4	t	Actual Demand	Level	Growth Rate	Seasonal Adjustment	One-step Forecast	Forecast Error	Squared Error
19	33	216	225.443778	3.53306794	0.98849075	225.886034	-9.8860337	97.7336631
0	34	218	224.53712	2.51839098	1.01620145	232.686604	-14.686604	215.696336
1	35	264	234.686314	4.26237232	1.04805266	237.966131	26.0338687	677.762319
2	36	304	243.108719	5.21312676	1.20400491	287.695391	16.3046092	265.840281
3	37	256	251.689034	5.98268058	0.9882334	245.399942	10.8320911	
4	38	266	257.186607	5.87181167	1.03945951	267.839315	-1.6414631	
5	39	250	264.407893	6.18022715	0.93293329	245.415956	4.09826962	
6	40	238	267.671012	5.51353701	0.91259776	246.938111	-8.6659704	
7	41	266	267.631851	4.2444959	1.0430106	284.934382	-18.852901	
8	42	258	275.63589	5.10372039	0.90644245	246.440262	11.0932975	
9	43	256	279.800648	4.88912539	0.92083759	258.515586	-2.8145982	
60	44	262	284.257492	4.79032959	0.92662094	263.799507	-1.3039303	
1	45	292	291.09096	5.25727845	0.98849075	285.721099	6.57439373	
2	46	300	295.972126	5.17131991	1.01620145	301.14951	-1.2441783	
3	47	312	299.96847	4.90278522	1.04805266	315.614188	-4.0086421	
4	48	366	304.722067	4.86868907	1.20400491	367.066488	-0.5847192	

Рис. 43. Симулированный будущий спрос

Можете продолжать выполнять эту операцию, пока у вас не будет столько сценариев будущего спроса, сколько вам хочется. Процесс, безусловно, утомляет? Тогда быстренько запишите макрос.

Как и в главе 7, проделайте следующие шаги:

- Вставка пустой строки 71.
- Копирование В53:В64.
- Специальная вставка транспонированных значений в строку 71.
- Нажатие кнопки остановки записи.

Записав эти нажатия клавиш, вы можете нажимать на ссылки макросов, которые вам нравятся снова и снова, пока у вас не окажется тонна сценариев. Можете даже подержать одну кнопку нажатой - такая тысяча сценариев вас тоже вполне устроит.

0			0.0.40	a	Sword	Forecasting x	Ism	s:	(Q. (S)	arch in Sh	tel.	
-	Home In	and the	dar Charts	Constitut	Exemples D	Review	- Devalo		Automation	andri in sei		~ 1
-	U93	:00	- fx	amarcers	remains to	ala series	n Develo					
	A	8	C	D	E	F	G	н	1	J	K	L
1	Total months		Level smoothing parameter (alpha)	Trend smoothing parameter (gamma)	Seasonal smoothing parameter (delta)		SSE	Standard Error				
2	36		0.30719534	0.22854493	0		3550.66	10.3728				
3												
4	t	Actual Demand	Level	Growth Rate	Seasonal Adjustment	One-step Forecast	Forecast Error	Squared Error				
61	45	292	291.09096	5.25727845	0.98849075	285.7211	6.57439					
62	46	300	295.972126	5.17131991	1.01620145	301.1495	-1.24418					
63	47	312	299.96847	4.90278522	1.04805266	315.6142	-4.00864					
64	48	366	304.722067	4.86868907	1.20400491	367.0665	-0.58472					
65												
66												
67												
68												
69	Simulated	Demand										
70	37	38	39	40	41	42	43	44	45	46	47	48
71	253.895	257.511	236.488212	235.119858	287.358643	242.2021	274.59	274.032	297.02	299.91	341.44	373.5
72	231.758	255.289	225.791095	235.913185	250.313833	236.7738	237.426	218.736	245.4	244.94	261.9	294.14
73	240.58	264.497	247.950805	225.703194	285.538599	237.3215	240.553	267.418	262.65	281.69	291.79	344.46
74	233.041	248.897	255.754605	246.004517	280.662925	259.272	248.713	255.152	285.54	293.17	321.72	362.81
75	251.231	259.94	243.998042	227.32731	261.123824	240.8568	253.848	246.288	277.3	272.35	294.87	344.16
76	343 003	962 660	330 CEC799	720 667424	195 271570	TAQ OILQ	960 643	170 2C	+ 200 6	100 79	337.54	200 22
Cont of	BEER Normal V	irm Read	¥					Aven	-100			

Рис. 44. У меня 1000 сценариев спроса

В завершенном виде ваша таблица должна быть похожей на рис. 44.

Теперь у вас есть сценарии на каждый месяц и вы можете использовать функцию PERCENTILE/ПЕРСЕНТИЛЬ, чтобы получить верхние и нижние границы в середине 95 % сценариев и создать интервал прогнозирования.

В качестве примера над месяцем 37 в А66 поместите формулу:

=PERCENTILE (A71:A1070,0.975)

=ПЕРСЕНТИЛЬ (A71:A1070,0.975)

Это даст вам 97,5-й персентиль спроса на данный месяц. В моей таблице он получается около 264. А в А67 можно получить 2,5-й персентиль:

=PERCENTILE (A71:A1070,0.025)

=ПЕРСЕНТИЛЬ (А71:А1070,0.025)

Обратите внимание: я использую интервал A71:A1070 из-за того, что у меня 1000 симулированных сценариев. Вы можете более или менее надеяться на проворство вашего указательного пальца. Если спросите меня, я скажу, что нижняя граница проходит примерно на 224.

Это значит, что, хотя прогноз на месяц 37 равен 245, 95 %-ный прогностический интервал - от 224 до

2	6	Λ	
	υ	4	,

5		A 361	0000	Q . (0 - X	· 4. F.	面白鳥	150% =		Q. 5	arch in She	et	
	Home La	yout Tal	des Charts	SmartArt	Formulas D	uta Kevies	w Develo	per		and Contactor In	al l'anne	¥
	L67	:00	- fx =PERCE	NTILE(L71 L1070	,0.025)							
121	A	В	C	D	E	F	G	Н	I.	1	K	
1	Total months		Level smoothing parameter (alpha)	Trend smoothing parameter (gamma)	Seasonal smoothing parameter (delta)		SSE	Standard Error				
2	36		0.30719534	0.22854493	0		3550.66	10.3728				
3												
4	t	Actual Demand	Level	Growth Rate	Seasonal Adjustment	One-step Forecast	Forecast Error	Squared Error				
51	45	292	291.09096	5.25727845	0.98849075	285.7211	6.57439					
52	46	300	295.972126	5.17131991	1.01620145	301.1495	-1.24418					
53	47	312	299.96847	4.90278522	1.04805266	315.6142	-4.00864					
54	48	366	304.722067	4.86868907	1.20400491	367.0665	-0.58472					
55												
56	263.592	284.285	264.700112	266.197426	309.378978	279.5458	291.232	300.17	326.65	348.21	370.74	436.8
57	223.96	240.793	218.676482	216.819849	251.661462	220.213	224.33	230.729	243.53	254.13	263.29	302.7
58												
59	Simulated	Demand										
70	37	38	39	40	41	42	43	44	45	46	47	4
71	253.895	257.511	236.488212	235.119858	287.358643	242.2021	274.59	274.032	297.02	299.91	341.44	373.
12	231.758	255.289	225.791095	235.913185	250.313833	236.7738	237.426	218.736	245.4	244.94	261.9	294.1
3	240.58	264.497	247.950805	225.703194	285.538599	237.3215	240.553	267.418	262.65	281.69	291.79	344.4
	333.044		see ar acor	SAC BOACAT	Ban conner	U HW Autoron	nan Tradi	tionintervals	+ neres	202.12	221.22	362.0

Рис. 45. Прогностический интервал по Холту-Винтерсу

Растянув эти уравнения персентилей до месяца 48 в столбце L, вы получите полный интервал (рис. 45). Теперь есть что передать начальнику: скромный отчет и, если хотите, прогноз! Смело заменяйте 0,025 и 0,975 на 0,05 и 0,95 для 90 %-ного интервала или 0,1 и 0,9 для 80 %-ного, и т. д.

Диаграмма с областями для пущего эффекта

Этот последний шаг не обязателен, но обычно прогнозы с прогностическим интерва-

лом изображаются в виде неких диаграмм с областями. Такую можно сделать и в Excel.

Создайте новый лист и назовите его Fan Chart. Вставьте в первую его строку месяцы с 37 по 48, а во вторую - значения верхней границы прогностического интервала из строки 66 вкладки PredictionsIntervals. В третью специальной вставкой поместите транспонированные значения текущего прогноза из вкладки HoltWintersSeasonal. В четвертую - значения нижней границы прогностического интервала из строки 67 таблицы с интервалами.

Итак, у нас есть месяцы, верхняя граница интервала, прогноз и нижняя граница интервала, все в ряд (рис. 46).

36		2 36	00	6 m.	2· 2	· 20 · 7	2 · (* E		Q. Sear	ch in Sheet		
•	Home Li	yout T	ables C	harts Si	martArt	Formulas	Data	Review	Develope	•		~ <
	A	B	C	D	E	F	G	н	1	1	K	L
1	37	38	39	40	41	42	43	44	45	46	47	48
2	263.59	284.28	264.7	266.2	309.38	279.55	291.23	300.17	326.65	348.21	370.74	436.82
3	245.4	263.54	241.4	240.89	280.76	248.72	257.47	263.92	286.7	300.04	314.91	368.04
ŧ	223.96	240.79	218.68	216.82	251.66	220.21	224.33	230.73	243.53	254.13	263.29	302.77

Рис. 46. Прогноз между двух прогностических интервалов

Выделив A2:L4 и выбрав «Диаграмму с областями» из меню диаграмм Excel, вы получаете три сплошные области, лежащие на графике друг над другом. Кликните правой кноп

кой мыши на одной из последовательностей и нажмите «Выбрать данные». Измените название оси X на одно из серии A1 :L1, чтобы на графике отображались правильные месяцы.

Теперь кликните правой кнопкой мыши на серию нижних границ и отформатируйте их, чтобы цвет ячеек был белым. Уберите линии разметки графика, целостности ради. Нестесняйтесь добавлять названия осей и подписи. Так получается диаграмма с областями, изображенная на рис. 47.

Рис. 47. Прекрасная диаграмма с областями

Самое замечательное в этой диаграмме то, что она передает и прогноз, и интервалы на одной простой картинке На графике есть два интересных момента:

• Погрешность со временем становится шире. В этом есть смысл. Неуверенность накапливается с каждым месяцем.

• Точно так же погрешность растет и в частях, приходящихся на периоды сезонного повышения спроса. С последующим его падением погрешность сжимается.

Вы освоили новые техники и приемы:

- > простое экспоненциальное сглаживание;
- выполнение проверки критерия Стьюдента на линейной регрессии, чтобы удостовериться в линейном тренде последовательности данных;
- ▶ холтовском экспоненциальное сглаживание с корректировкой тренда;
- ▶ расчет автокорреляций и построение коррелограмма с критическими
- ▶ значениями;
- выполнение мультипликативного экспоненциального сглаживания Холта - Винтерса с помощью скользящего среднего 2 * 12;
- прогнозирование сглаживанием Холта Винтерса;
- создание прогностических интервалов вокруг прогноза с помощью симуляции Монте-Карло;
- ▶ отображение прогностических интервалов на диаграмме с областями.